Common Mode Filters (Part 2)

X2Y[®] [®] Capacitors vs.

Common Mode Chokes

Objective

- This presentation is a continuation of testing shown in <u>Common Mode Filters (Part1)</u>
- Use 4-port, mixed-mode measurements to evaluate and compare the performance of single component, dual line CM filters used for DC powerline filtering:
 - Common mode chokes (CMCs)
 - CMCs are selected by sorting highest volume stocked at a top electronic component distributor
 - X2Y®
 - 1206 size, 100nF rated capacitance

Test Setup

- Measurement Equipment
 - Agilent E5071C ENA Network Analyzer
- Test Board
 - FR-4, Dk of 4.6 +/-0.2, thickness 0.059"
 - Dielectric spacing, top layer to inner GND layer is 0.012"
 - Vertical mount SMAs
- Test Method / Data Focus
 - Mixed-mode S-parameters.
 - Balanced Device Characterization

SOLT Calibration Positions

X2Y® Capacitor DUTs

Inductor DUTs

Key Parameters Tested

ightharpoonup S_{DD21}

 describes the DUT's differential response to a differential stimulus.

\triangleright S_{DC21}

 Describes common to differential mode conversion, which is related to the susceptibility of a device to EMI.

> S_{CD21}

 Describes differential to common mode conversion, which is related to the generation of EMI.

\triangleright S_{CC21}

 describes the DUT's commonmode response to a commonmode stimulus.

Method Source: Balanced Device Characterization, Agilent Technologies

DUTs

DUT#	Туре	Impedance @ Frequency	Current Rating (Max)	DC Resistance (DCR) (Max)	Size / Dimension	Appearance (not to scale)
C3	X2Y®	N/A (in bypass)	N/A (in bypass)	0	0.120" L x 0.060" W x 0.05" H	
L1(A)	CM Choke	300 Ohm @ 100MHz	5A	10 mOhm	0.276" L x 0.236" W x 0.138" H	21111
L1(B)	CM Choke	700 Ohm @ 100MHz	4A	15 mOhm	0.276" L x 0.236" W x 0.138" H	· · ·
L2	CM Choke	700 Ohm @ 100MHz	8A	6 mOhm	0.472" L x 0.433" W x 0.236" H	· ·
L5(A)	CM Choke	300 Ohm @ 100MHz	5A	10 mOhm	0.472" L x 0.433" W x 0.236" H	· ····
L5(B)	CM Choke	1 kOhm @ 100MHz	6A	14 mOhm	0.472" L x 0.433" W x 0.236" H	,
L6(A)	CM Choke	600 Ohm @ 100MHz	1.4A	120 mOhm	0.197" L x 0.197" W x 0.177"	
L6(B)	CM Choke	600 Ohm @ 100MHz	1.4A	120 mOhm	0.197" L x 0.197" W x 0.098"	
L6(C)	CM Choke	600 Ohm @ 100MHz	1.4A	120 mOhm	0.197" L x 0.197" W x 0.098"	
L6(D)	CM Choke	600 Ohm @ 100MHz	1.4A	120 mOhm	0.197" L x 0.197" W x 0.098"	
L7	CM Choke	700 Ohm @ 100MHz	5A	10 mOhm	0.354" L x 0.276" W x 0.177"	(am
L8	CM Choke	230 Ohm @ 100MHz	3A	50 mOhm	0.185" L x 0.177" W x 0.079"	
L9	CM Choke	550 Ohm @ 100MHz	10A	4 mOhm	0.591" L x 0.512" W x 0.236"	- minim

DUT Source:

Footprint Comparisons

X2Y®

1206 0805

0603

L8 - CMC

Mixed-Mode Analysis, L1(A) vs. C3

Mixed-Mode Analysis, L1(B) vs. C3

Mixed-Mode Analysis, L2 vs. C3

Mixed-Mode Analysis, L5(A) vs. C3

Mixed-Mode Analysis, L5(B) vs. C3

Frequency

Mixed-Mode Analysis, L6(A) vs. C3

Mixed-Mode Analysis, L6(B) vs. C3

Mixed-Mode Analysis, L6(C) vs. C3

Mixed-Mode Analysis, L6(D) vs. C3

X2Y® vs. L7

X2Y® vs. L8

X2Y® vs. L9

Data Trend, X2Y® vs. All CMCs

Conclusion

- X2Y® 100nF X7R exhibits the lowest mode conversion vs. all CMCs tested
 - Common to differential mode conversion increases susceptibility to EMI (S_{DC21}).
 - Differential to common mode conversion results in radiated emissions (S_{CD21}).
- The data indicates CMCs require additional filter components to match X2Y's performance
- X2Y has the smallest footprint on the PCB
- X2Y is a cost reduction vs. the CMCs

