

Technology In Balance

X2Y_® Amplifier Decoupling

Test comparisons, X2Y[®] versus conventional MLCCs for amplifier decoupling

X2Y_® Amplifier Decoupling

- Test #1 uses an <u>AD8221</u> instrumentation amplifier
 - Pin pattern is amenable to X2Y[®] "circuit 1" use
 - +V / -V power pins are on the same side of the device

Same side

- Test #2 uses an <u>INA121</u> instrumentation amplifier
 - Pin pattern is amenable to X2Y[®] "circuit 2" use
 - +V / -V power pins are on the *opposite sides* of the device

Opposite sides

X2Y Circuit 2

Compare Bypass Conventional MLCC vs. X2Y

<u>Test #1</u>

- Compares external noise rejection of power bypass networks
 Single X2Y[®] 330nF rated part, versus four total MLCCs
- Noise voltage measured directly across IC pins

PCB Configuration

<u>Test #1</u>

- Two layer 1.5mm PCB
- Single X2Y[®] 330nF rated part, versus four total MLCCs
- Noise voltage probed directly across IC pins at IC body

PCB Configuration

<u>Test #1</u>

- Equalized layout parasitics
- Ground attachment matched between set-ups
- Capacitor set-backs matched between set-ups

Noise Injection

- 200ps edges
 Comparable to memory
- 100MHz pulse rate
 - Isolate any cavity / capacitor ringing
- 400mV on 15V power
 - Alternate tests:
 - +15V / -15V
 - 2.7% рр

VCC_{15V+}

- X2Y[®] 3.7mV pp, conventional 5.6mV pp
- Conventional noise is 151% of X2Y[®] noise

VCC_{15V} -

- X2Y[®] 5.3mV pp, conventional 8.9mV pp
- Conventional noise is 168% of X2Y[®] noise

Compare Bypass Conventional MLCC vs. X2Y

<u>Test #2</u>

- Amplifier power pin pattern amenable to X2Y[®] "circuit 2" use
 the +/- power pins are on the same side of the device
- Compares single X2Y[®] 100nF rated (200nF total) per pin vs. a single MLCC 220nF per pin

PCB Configuration

- <u>Test #2</u>
- Ground attachment is matched between set-ups
- Capacitor set-backs are matched between set-ups
- Compares single X2Y[®] 100nF rated (200nF total) per pin vs. a single MLCC 220nF per pin

VCC_{15V} -

- X2Y[®] 3.6mV pp, conventional 10.1mV pp
- Conventional noise is 280% of X2Y[®] noise

VCC_{15V+}

- X2Y[®] 4.9mV pp, conventional 17.3mV pp
- Conventional noise is 353% of X2Y[®] noise

Summary

• <u>Test #1</u>

 Conventional filter using two capacitor values per power pin, four capacitors total, results in 150% of the voltage noise when using just one X2Y[®] for *both* power pins.

• <u>Test #2</u>

- Conventional filter using one capacitor value per power pin, two capacitors total, results in 280% of the voltage noise when using one X2Y[®] for *each* power pin.
- Benefits: smaller space, fewer parts, better economy and performance when using X2Y[®] components.

