Using a Spatial View to Understand and Solve Common Power Bypass Problems

Why Is Space So Important?

- Power delivery is a process of propagating E/M fields with a minimum disturbance in E.
- Field propagation is fundamentally limited by spatial effects: inductance and wave modes.

Page 2

ID Networks Good to ???

- I dimensional SPICE networks are often used to design power delivery networks.
- Accuracy falls off rapidly with frequency
- Cut-off varies w/ cavity thickness.
 - Figure of merit: 80MHz * H in mils
 - A typical 4 mil cavity becomes inductive at 80MHz / 4 = 20MHz
 - A thin 0.4 mil cavity becomes inductive near 200MHz

©2008, IPBLOX LLC, All Rights Reserved

GROUP

Example

- Using high ESR, constant L caps target impedance scales by capacitor count up to F_{CUTOFF}
 - $F_{CUTOFF} = 0.707 * ESR / (2pi * ESL)$
 - For 500mOhm / 500pH capacitors = 112MHz
- # of caps for 50mOhms: 500mOhms / 50mOhms = 10
- # of caps for 25mOhms: 500mOhms / 25mOhms = 20

ID Falls Apart Due to Interconnects

- Interconnects are fundamentally inductive at any appreciable frequency
- Inductance of a rectangular section:

Our 50mOhm Network on a Plane

- Even at a pedestrian 50mOhms, a 4mil plane cavity limits performance below 100MHz.
- We can improve w/ thinner planes
 - Expensive
 - BellCore requires 4mils, w/ waiver for BC2000 (2 mils)

Power Cavity LC Behavior

- The parallel plates of a plane cavity form a plate capacitor
- But to current impulses that are electrically short compared to he plane extents the current / voltage transfer function is *inductive*

Shorted Boundary Response

- The lowest impedance the circuit elements of a PDN can present is a virtual short.
- Limiting response of a power cavity section may be determined by modeling with the edges shorted.
- Wave effects introduce impedance peaks and valleys to the frequency response

Terminated Boundary Response

- A perfect boundary termination eliminates reflections.
- Plane response is inductive to all electrically short events.

 $\textcircled{\sc 0}$ 2008, IPBLOX LLC, All Rights Reserved

Composite Response for Convolution

- Worst-case impedance is what we want to evaluate
- Ignore impedance valleys from standing waves as they rely on signal history
- Include impedance peaks as depending on signal history they can be encountered

Page 10

IC Die / Package \Leftrightarrow PCB PDN Resonance

 IC die and/or on substrate capacitance reacts w/ PCB PDN response

- Interconnect drives inductive behavior

 Total effective resistance of the PCB PDN, and the IC PDN combined w/ net inductance drive circuit Q

IC / PCB PDN Resonance

Transfer Impedance Responses Example IC / PCB PDN

Calculating Resonance

- First order approximation usually good to about 10% in frequency:
 - $F_{RES} = 0.16*(p*H/(ESL_{CAP}*E*eR))^{0.5}$

Where:

p is the number of capacitors / square inch

H is the plane cavity height in mils

ESL is the mounted inductance of a single capacitor

- E is 225E-15pF/Inch
- eR is the material relative permitivity

What the Formula Tells Us

- Thinner dielectrics require a greater capacitor density to maintain a given F_{RES}
- Higher eRs also require a higher capacitor density for a given ${\sf F}_{\sf RES}$
- Trying to drive F_{RES} beyond the signal band with sheer capacitor density is very expensive, # of caps increases as square of F_{RES}

Controlling Resonance

- Resonance control
 requires damping
- Damping can be provided as a series
 ESR in the PCB PDN or by a series and/or
 shunt ESR in the IC
 package

Z Axis Dominance

- Z Axis Inductance often much worse than X/Y
- Virtex[®]5 VCCIO about 9.7pH / mil supporting 40 I/Os
- Stratix[®] 3 VCCIO about 2.3pH / mil supporting 92 I/Os

Examples

- Samtec PowerPoser[™]
 - Thin dielectrics and low inductance caps
 - Dramatic improvements in SERDES, and single ended signaling

Comparative Performance Idle

Virtex[®]4 500Mbps SSTL1.8 No DCI

Comparative Performance Local Aggressors Only

Comparative Performance All Aggressors

500Mbps

X2Y[®] Improvements to Altera SerDes

- Replaced bypass network on existing reference design.
- Applied spatial methods to raise F_{RES} and damp
- Substantially improved Dj while reducing total capacitor count by 70%

3.125Gbps Performance PRBS7

- Measurements Taken w/ Tektronix CSA8200
- 80E03 20GHz sampling heads

3.125Gbps PRBS7, 1 Minute Captures

Trigger Source: 156.25MHz Reference Clock

3.125Gbps Performance PRBS7/PRBS23

• X2Y[®] Reduces jitter to 32ps p-p PRBS7 & PRBS23

- vs 49ps in reference design

Trigger Source: 156.25MHz Reference Clock

3.125Gbps PRBS23, 1 Minute Captures

©2008, IPBLOX LLC, All Rights Reserved

Page 23

3.125Gbps Performance PRBS7/PRBS23

- X2Y[®] improves eye amplitude >5%
 - 870mV pp @ sample point vs 820mV pp reference

Trigger Source: 156.25MHz Reference Clock

3.125Gbps PRBS23, 1 Minute Captures

©2008, IPBLOX LLC, All Rights Reserved

Page 24

Conclusions

- PDN performance is limited by the performance of interconnects, which are spatial.
- To high frequency signals planes always appear *inductive*
- Paradoxically, the distributed capacitance of planes resonates with mounted bypass networks

GROUP

Conclusions

- Ultimately, inductance and resonances (driven by inductance) are the evils we need to manage in a PDN
- Thin and high eR dielectrics reduce PDN impedance, but require greater bypass capacitor density for a given F_{RES}
- Careful PDN implementations that take spatial effects into account can result in dramatic performance improvements and decreased component counts.

How To Contact Us?

IPBLOX, LLC I 50 N. Center St. #211 Reno, NV 89501 v (866) 675-4630 f (707) 780-1951 www.ipblox.com eng@ipblox.com steve@teraspeed.com

Power Delivery Solutions

Teraspeed Consulting Group, LLC 121 North River Drive Narragansett, RI 02882 v (401) 284-1827 f (401) 284-1840 <u>www.teraspeed.com</u> scott@teraspeed.com 3D E/M Modeling Teraspeed Labs 13610 SW Harness Lane Beaverton, OR 93007 v (503) 430-1065 f (503) 430-1285 www.teraspeed.com

tom@teraspeed.com IBIS Model Development

