X2Y® FPGA SerDes Bypass

Simplified design and improved performance using X2Y® capacitors w/ Altera StratixII GX SerDes

Steve Weir, Consultant with Teraspeed® Consulting Group LLC and X2Y Attenuators, LLC, has more than 20 years of experience in the Electronics Industry, holds 17 U.S. patents and has architected a number of packet and TDM switching products. Steve has participated as a TecPanelist at several DesignCon Symposia and authored numerous technical papers on the subject of bypass capacitor application for PDN design. Steve is a frequent contributor to the Si-List message reflector, dedicated to signal and power integrity.
- SERDES transmit power supplies: 13 X2Y® capacitors replace 38 0402 caps
 - X2Y bypass network engineered to match MLCC network impedance
- Plane inductance saturation for each supply is achieved w/ 2 X2Y® capacitors

MLCC Design

![MLCC Design Diagram]

X2Y® Design

![X2Y Design Diagram]
X2Y® vs. MLCC

MLCC Design

X2Y® Design
Transmit Analog: VCCH

- **X2Y® Design**
 - 2 x 330uF tantalum caps + 2 MLCCs + 7 X2Y®
 - 1D < 80mOhms equivalent resistive to 250MHz
 - Ignores spatial effects and IC parasitics
 - Spatial effects dominate above 10MHz

- **Original network, FDTIM**
 - L_{BYPASS} decreases with increasing freq.
 - Near 20MHz about L_{TOTAL} about 220pH
 - Die / bypass PRF near 200MHz
 - Bypass / PCB PRF near

- **X2Y® network selective zeroes**
 - Lower L_{BYPASS} @ 20MHz up
 - Zero for Die / bypass PRF
 - Zero for PCB / bypass PRF
VCCTX PCB / Bypass Resonance

- Original network
 - @ relatively low PRF
- X2Y® Network
 - Lower distributed L of 6/7 X2Y® caps raises to 580MHz
 - Suppressed w/ single 100pF rated X2Y®
 - Good suppression w/ conventional caps difficult due to high Q
 - Measured results, PRF completely suppressed
3.125Gbps Performance PRBS7

- X2Y® Reduces jitter to 32ps p-p jitter
 - vs 49ps in reference design

3.125Gbps PRBS7, 1 Minute Captures

>34% pp Jitter Reduction

Trigger Source: 156.25MHz Reference Clock
X2Y® improves better eye amplitude >5%
- 870mV pp @ sample point vs 820mV pp reference

3.125Gbps PRBS7, 1 Minute Captures

>5% Amplitude Improvement

Trigger Source: 156.25MHz Reference Clock
3.125Gbps Performance PRBS23

- Shows same improvements in jitter and eye amplitude:
 - X2Y® 32ps p-p jitter vs 49ps in reference design
 - X2Y® 870mV pp vs 820mV pp in reference design

3.125Gbps PRBS23, 1 Minute Captures

Trigger Source: 156.25MHz Reference Clock
X2Y provides the following benefits:

- 2-3X lower impedance 20MHz-100MHz w/ 7 X2Y® capacitors instead of 20 ordinary capacitors
- >2.5:1 Higher F_{RES}
- 2.5:1 reduction in Q
• Phase inflection @ resonance much smaller, and narrower w/ X2Y® solution.
Impedance Comparisons w/o IC

- Radically lower mounted L / cap w/ X2Y® top-side solution flattens impedance modulation.
 - Remains much closer to limit of shorted planes
- Higher F_{RES} w/lower Q stabilizes power system much faster after each transient.
Summary

- Using 13-X2Y capacitors to replace 38 ordinary MLCCs in the SERDES transmit power supplies resulted in:
 - Significant improvements in jitter and eye amplitude
 - Component reduction
 - Less board space used
 - Placement cost reduction
 - More room for trace routes
 - Improved reliability through fewer components