DesignCon 2009
PCB Power Delivery Optimizations for the Cost Driven Era

Steve Weir
IPBLOX, LLC
sweir@ipblox.com
steve@teraspeed.com

Tom Dagostino
Teraspeed Labs/Z2 Consulting
tom@teraspeed.com
Property Rights Disclosure

“PROPERTY OF TERASPEED CONSULTING GROUP LLC INCLUDES MATERIALS LICENSED FROM IPBLOX LLC”

Information contained in this document is not to be reproduced in any form without permission of Teraspeed Consulting Group LLC. Any information in this document is proprietary and may not be used or disclosed without the express permission of Teraspeed Consulting Group LLC.

“CONFIDENTIAL PROPERTY OF TERASPEED CONSULTING GROUP LLC, IPBLOX LLC”

This document includes valuable trade secrets. Unauthorized disclosure of use of this document may violate the Uniform Trade Secrets Act.
The Power Deliver Problem

- Support DC current requirements of each IC
- Support AC current requirements of each IC
- Sufficiently suppress AC noise between separate IC power nodes and ICs
- Support I/O return path impedance requirements
- Meet emissions and susceptibility requirements
Divide and Conquer

• Divide the problem between what is on the PCB and the requirements and parasitics of each IC
• Results in impedance budget for each IC at the PCB attach
What We Can Control On the PCB

- PCB stack-up
- PCB laminate selection
- Bypass capacitor selection
- Bypass network design
- Choices interact
Power Plane Behavior

- Power plane cavities exhibit two distinct behaviors:
 - Distributed impedance
 - How the cavity appears to many loads distributed over the cavity X-Y extents
 - Very low inductance, modest value capacitor
 - Thin cavities increase capacitance
 - Local impedance
 - How the cavity appears to any given load
 - Series R-L out to bypass caps & VRM
 - Thin cavities decrease inductance
Plane Cavity R / L

• In the X-Y plane, spreading resistance and inductance both scale identically
 – Simulation computations can be greatly reduced by solving first as just an R-mesh, and then reducing the result to a matrix or RLCs between IC and capacitor attachment nodes and then solving complex Z vs Freq

• Changing the size / shape of a polygon changes |Z| but not phase
Cavity Height and Complex Z

- R/L behavior depends on:
 - Conductor bulk resistance,
 - Skin effect,
 - Conductor relative permeability, 1.0 for copper
 - Cavity dielectric height
- Reflected as phase response of interconnect alone
Cavity Height and Complex Z

- Thick cavities exhibit almost no local skin effect
- Local power connections inductive from 73kHz 2oz, 138kHz 1oz
- Z phase 2oz crosses 45 deg 0.53F of 1oz
 - W/o skin effect w/b 0.50F
Cavity Height and Complex Z

- Cavity transition to inductive response occurs:
 - <150kHz for 48mil 1oz
 - <3MHz for 4mil 1oz
 - <15MHz for 1mil 1oz
 - Skin effect apparent

- Three key parameters are:
 - INDUCTANCE, and INDUCTANCE, and INDUCTANCE
PDN as Collection of Local PDNs

- Good approximation that handles worst case-
 - All ICs draw $I_{\text{AC,MAX}}$ in phase
- Approximation becomes increasingly accurate for thick cavities
 - Spreading $|Z|$ isolates non-local bypass
- Effective divide and conquer
 - Second pass optimization *may* reduce final requirements
PDN as Collection of Local PDNs

- Solve PDN for each IC first
- Adjust for full optimization second
 - Useful tools: Optimize PI™, Hyperlinx™, SI-Wave™
- Adjust for resonances and EMI hot-spots third
2 Routing Layer Constructions

- 4 layer, thick power cavity traditional
 - Very high impedance cavity
 - Typical 300pH L_{SPREAD} to IC power
 - Peripheral bypass caps below 300pH little effect
 - < 300pH Relies on enough power / gnd pairs directly under IC to bottom of PCB and caps to match
2 Routing Layer Constructions

• Add thin power cavity to center?
 – IC Z axis L improves 2:1
 – Caps can go top or bottom
• Total Z axis still very high for caps and IC
2 Routing Layer Constructions

- Add thin power cavities to outside
 - IC Z axis very low
 - Cap attach very low
 - L/R spreading very low

- Bottom cavity natural puddle, or add’l route (4mil), or combination
4 Routing Layer Constructions

- Traditional 6 layer same as 4 layer
 - For Tx line return purposes 2 PCBs, top and bottom
- 8 layer constructions very different than 6 layer
 - IC Z axis drops
 - 2 power cavities
 - Can puddle bottom

4 Signal Layer Constructions

- 6 Layer: One FR406 Power Cavity
- 8 Layer: Two FR406 Power Cavities
- 8 Layer: Two HK04 Cavities
Caps Req’d Versus L

- Caps peripheral to IC using thick cavities:
 - Poor effectiveness
- Caps under IC
 - Works adequately if IC mfg provides enough pwr/gnd via pairs
 - If not 4 layer design won’t work
Caps Req’d Versus L

- Caps peripheral to IC using thin cavities:
 - Can eliminate many caps
 - How many depends on target L, cavity thickness
 - Only works down to L_{SAT}

![Inductance Bypass Network to IC Power Cavity Attach](image)

<table>
<thead>
<tr>
<th>Capacitor Type</th>
<th>L_{SAT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0402 X2Y</td>
<td>6</td>
</tr>
<tr>
<td>4 layer, 50 mil center</td>
<td>625pH</td>
</tr>
<tr>
<td>6 layer, 4 mil center</td>
<td>50pH</td>
</tr>
<tr>
<td>6 layer, 4 mil top</td>
<td>50pH</td>
</tr>
<tr>
<td>6 layer, 1 mil top</td>
<td>13pH</td>
</tr>
</tbody>
</table>

Figure 1, Inductance Saturation Capacitor Counts, Typical
Caps Req'd vs \(L_{\text{TGT}} \)

2 / 4 Routing Layer PCBs

<table>
<thead>
<tr>
<th>Target Inductance</th>
<th>0402</th>
<th></th>
<th></th>
<th></th>
<th>X2Y™</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4/6 Layer</td>
<td>6/8 Layer</td>
<td>6/8 Layer</td>
<td>6/8 Layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottom Caps</td>
<td>4mil</td>
<td>1mil</td>
<td>4mil</td>
<td>1mil</td>
</tr>
<tr>
<td>5pH</td>
<td>363</td>
<td>No Solution</td>
<td>No Solution</td>
<td>No Solution</td>
<td>No Solution</td>
</tr>
<tr>
<td>10pH</td>
<td>182</td>
<td>No Solution</td>
<td>136</td>
<td>No Solution</td>
<td>37</td>
</tr>
<tr>
<td>20pH</td>
<td>91</td>
<td>No Solution</td>
<td>37</td>
<td>No Solution</td>
<td>10</td>
</tr>
<tr>
<td>30pH</td>
<td>61</td>
<td>102</td>
<td>21</td>
<td>28</td>
<td>6</td>
</tr>
<tr>
<td>40pH</td>
<td>46</td>
<td>34</td>
<td>15</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>50pH</td>
<td>37</td>
<td>20</td>
<td>12</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>60pH</td>
<td>31</td>
<td>15</td>
<td>9</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>70pH</td>
<td>26</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>80pH</td>
<td>23</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>90pH</td>
<td>21</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>100pH</td>
<td>19</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>120pH</td>
<td>16</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>140pH</td>
<td>13</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>160pH</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>180pH</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>200pH</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>220pH</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Capacitor Counts vs. Inductance to IC Attach 0.062" PCB

© 2009, IPBLOX LLC, All Rights Reserved
Caps Req’d vs L_{TGT}

2 / 4 Routing Layer PCBs

- At modest L_{TGT}:
 - $90\,\text{pH} < L_{TGT} < 300\,\text{pH}$
 - 4mil, 1mil drops caps $\approx 3:1, 4:1$ versus 50/42mil
- More demanding L_{TGT} more advantage to 1mil versus 4mil cavities
- Combination of 1mil and X2Y® 10:1 cap reduction from 200pH down to 20pH L_{TGT}
 - 200pH 63mOhms @ 50MHz
 - 20pH 6.3mOhms @ 50MHz

<table>
<thead>
<tr>
<th>Target Inductance</th>
<th>0402</th>
<th>6/8 Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4/6 Layer</td>
<td>6/8 Layer</td>
</tr>
<tr>
<td></td>
<td>Bottom Caps</td>
<td>4mil</td>
</tr>
<tr>
<td>5pH</td>
<td>363</td>
<td>No Solution</td>
</tr>
<tr>
<td>10pH</td>
<td>182</td>
<td>No Solution</td>
</tr>
<tr>
<td>20pH</td>
<td>91</td>
<td>No Solution</td>
</tr>
<tr>
<td>30pH</td>
<td>61</td>
<td>102</td>
</tr>
<tr>
<td>40pH</td>
<td>46</td>
<td>34</td>
</tr>
<tr>
<td>50pH</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td>60pH</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>70pH</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>80pH</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>90pH</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>100pH</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>120pH</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>140pH</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>160pH</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>180pH</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>200pH</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>220pH</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>
Evaluating Costs

• Evaluation comes down to the big three:
 – PCB material cost
 – Bypass caps, BOM cost
 – Bypass caps, placement cost

• Conventional bypass caps are almost free
 – $0.001 typical in high volume

• Assembly placement cost is the critical parameter for both more and/or better PCB materials and/or better caps
Evaluating Costs

- At current prices, break-even on 4/6 layer alternatives occurs near $0.01 / comp placement
 - Why?
 - **Adding 1 layer of FR406 adds $2.00/sq ft / $0.014 / sq”**
 - Save 1.3 caps / sq” pays back - $2.00 / (144 * $0.011)
 - **Changing 2 layers of FR406 to HK04 adds $6.00/sq ft**
 - Save 3.8 caps / sq” pays back - $6.00 / (144 * $0.011)
 - **X2Y™ replaces caps ≈ 4:1**
 - $0.03 comp + $0.01 place ≈ $0.004 comp + $0.04 place

- Key drivers:
 - Performance targets and
 - Assembly cost
Example Cases

- 4” x 8” PCB
- Ten IC’s 70pH L_{TGT}
 - 22mOhms @ 50MHz
- 2 routing layers
- $2.00/sq ft FR406 / layer pair
- $5.00/sq ft HK04™ / layer pair
- $0.001 / cap 0402
- $0.03 / cap X2Y™
- $0.015 / cap assy

<table>
<thead>
<tr>
<th>Costs</th>
<th>0402</th>
<th>X2Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 lyr</td>
<td>6 lyr</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>4 mil top</td>
</tr>
<tr>
<td>PCB</td>
<td>$0.89</td>
<td>$1.33</td>
</tr>
<tr>
<td>Capacitors req’d</td>
<td>260</td>
<td>110</td>
</tr>
<tr>
<td>Cap. mat’l</td>
<td>$0.26</td>
<td>$1.10</td>
</tr>
<tr>
<td>Cap. assy</td>
<td>$3.45</td>
<td>$1.65</td>
</tr>
<tr>
<td>Total</td>
<td>$4.57</td>
<td>$4.07</td>
</tr>
</tbody>
</table>

Table 1, Example Two Signal Routing Layer Costs
Example Cases

- 4” x 8” PCB
- 4 routing layers
- 12 ICs 50pH L_{TGT}
 - 15mOhms @ 50MHz
- $2.00/sq ft FR406 / layer pair
- $5.00/sq ft HK04™ / layer pair
- $0.001 / cap 0402
- $0.03 / cap X2Y™
- $0.015 / cap assy

<table>
<thead>
<tr>
<th>Costs</th>
<th>0402</th>
<th>X2Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8 lyr</td>
</tr>
<tr>
<td></td>
<td>6 lyr</td>
<td>4 mil top</td>
</tr>
<tr>
<td>PCB</td>
<td>$1.33</td>
<td>$1.78</td>
</tr>
<tr>
<td>Capacitors req’d</td>
<td>444</td>
<td>240</td>
</tr>
<tr>
<td>Cap. mat’l</td>
<td>$0.45</td>
<td>$0.24</td>
</tr>
<tr>
<td>Cap. assy</td>
<td>$6.66</td>
<td>$3.60</td>
</tr>
<tr>
<td>Total</td>
<td>$8.44</td>
<td>$5.62</td>
</tr>
</tbody>
</table>

Table 1, Example Four Signal Routing Layer Costs
Conclusions

- Power distribution focus is managing inductance
- PCBs are locally inductive from low frequencies
 - Transition frequency independent of plane shape
 - Inductance proportional to thickness
- Thinner dielectric allows more inductance in bypass cap network, IE fewer caps
- In many low-cost constructions, total manufactured cost can be minimized through use of:
 - More material – take 4 to 6 layer, or 6 to 8 layer w/ glass / resin cavities
 - More expensive raw materials – using 1 mil polyimide (DuPont Interra HK04®), or epoxy (Oak/Mitsui BC24®) dielectric in place of 4 mil glass / resin
 - Lower inductance capacitors such as X2Y™
- Thinner cavities offer other performance benefits, but here we are concerned only with cost and presume function can be realized w/thick cavities
- Actual results depend on IC L_{TGT} and assembly cost per capacitor
 - Know your requirements!
 - Know your costs!
How To Contact Us?

IPBLOX, LLC
150 N. Center St. #211
Reno, NV 89501
v (866) 675-4630
f (707) 780-1951
www.ipblox.com
eng@ipblox.com
steve@teraspeed.com
Power Delivery Solutions

Teraspeed Consulting Group, LLC

Other Affiliates

Teraspeed Consulting Group, LLC
121 North River Drive
Narragansett, RI 02882
v (401) 284-1827
f (401) 284-1840
www.teraspeed.com
scott@teraspeed.com
3D E/M Modeling

Z2 Consulting
13610 SW Harness Lane
Portland, OR 93007
v (503) 430-1065
f (401) 284-1840
www.teraspeed.com
tom@teraspeed.com
Metrology
Measurement based IBIS models

Sage Consulting
13610 SW Harness Lane
Portland, OR 93007
v (503) 679-2429
f (401) 284-1840
www.teraspeed.com
al@teraspeed.com
Serial link development
Jitter analysis