Summary

The purpose of this application note is to specifically address the performance results of the X2Y® Technology when the power return is referenced to the chassis in addition to G1 and G2 terminations on the X2Y® component.

Application Notes 2004 - Ferrite Bead Removal and 2005 - X2Y® DC Power Filtering (Ceramic, Ferrite, MOV) use a Circuit 1 configuration where the power and return leads of a single board computer are attached to the A and B terminals of X2Y® component. The G1 and G2 terminals of the X2Y® component are connected to a floating metal enclosure (Figure 1).

Figure 1. X2Y® component schematic of a Circuit 1 configuration. For more information on the Circuit 1 configuration see Application Note #1006 X2Y® Circuit 1 & Circuit 2 Configurations.

Several engineers from leading OEMs have said that their specific applications require the return to be referenced to the chassis and have requested test data with the X2Y® component attached as shown in Figure 2.

Figure 2. X2Y® component schematic of a modified Circuit 1 configuration.

DISCLAIMER: Information and suggestions furnished in this document by X2Y Attenuators, LLC are believed to be reliable and accurate. X2YAttenuators, LLC assumes no responsibility for its use, nor for any infringements of patents or other rights of third parties which may result from its use. X2Y® is a registered trademark. All other brand or product names mentioned in this document are trademark or registered trademarks of their respective holders. These notes are subject to change without notice. Copyright © X2Y Attenuators, LLC all rights reserved.
Experiment Setup

The experiment protocol will consist of a CMD-11E1 single board computer manufactured by Axiom Manufacturing Inc. Hook-up wire is soldered to the board input power outlet. The single board computer is placed into a metal enclosure. Two small holes are drilled into the enclosure for access to the power leads. An array of D cell batteries is attached to the power leads to provide a 6-volt DC power supply (Figure 3).

![CMD-11E1 in metal enclosure](image)

Figure 3. Left-to-right, CMD-11E1; CMD-11E1 in metal enclosure; metal enclosure closed (top); DC power supply (bottom).

The DUT will be an 180nF 1206 ceramic X2Y® component placed on a small PCB located at the power lead’s exit point of the metal enclosure (Figure 4).

![DUT placement on metal enclosure](image)

Figure 4. *DUT placement on metal enclosure.*

The laboratory equipment used in this experiment are a GTEM (ETS-Lindgren IC-GTEM 250) (Figure 5), spectrum analyzer (IFR AN920) (Figure 6), and a preamp (AR LN1000) (Figure 7).
Figure 5. GTEM (ETS-Lindgren IC-GTEM 250) to measure radiated emissions (left); DUT placement in GTEM (right).

Figure 6. Spectrum analyzer (IFR AN920).

Figure 7. Preamp (AR LN1000) used to amplify the frequencies 200 MHz to 1 GHz.
The radiated emission was measured with 501 data points from 9kHz to 500kHz. Figure 8 shows the test setup and plot of the results.

IFR An920 Spectrum Analyzer
- **Frequency Range:** 9kHz - 500kHz
- **Sweep:** 8 x20 ms
- **Bandwidth:** 9 KHz
- **Video:** none
- **Atten:** 0 dB
- **Gain:** 30 dB
- **Measurement:** dBuV
- **Gtem:** ETS-Lindgren IC-GTEM 250
- **Voltage:** 6V
- **Preamp:** AR LN1000

Return attached/not attached to enclosure 9kHz - 500kHz

![Graph](image)

Figure 8. Test setup and results from 9kHz – 500kHz.
The radiated emission was measured with 501 data points from 100kHz to 200MHz. Figure 9 shows the test setup and plot of the results.

IFR An920 Spectrum Analyzer
- Frequency Range: 100 KHz - 200 MHz
- Sweep: 8 x 5 ms
- Bandwidth: 120 KHz
- Video: none
- Atten: 20 dB
- Gain: 30 dB
- Measurement: dBuV
- Gtem: ETS-Lindgren IC-GTEM 250
- Voltage: 6V
- Preamp: AR LN1000

Figure 9. Test setup and results from 100kHz – 200MHz.
Radiated Emissions From 200MHz to 1GHz

The radiated emission was measured with 501 data points from 200MHz to 1GHz. Figure 10 shows the test setup and plot of the results.

<table>
<thead>
<tr>
<th>IFR An920 Spectrum Analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range: 200 MHz - 1 GHz</td>
</tr>
<tr>
<td>Sweep: 8 x 10 ms</td>
</tr>
<tr>
<td>Bandwidth: 120 Khz</td>
</tr>
<tr>
<td>Video: none</td>
</tr>
<tr>
<td>Atten: 0 dB</td>
</tr>
<tr>
<td>Gain: 30 dB</td>
</tr>
<tr>
<td>Measurement: dBuV</td>
</tr>
<tr>
<td>Glem: ETS-Lindgren IC-GTEM 250</td>
</tr>
<tr>
<td>Voltage: 6V</td>
</tr>
<tr>
<td>Preamp: AR LN1000</td>
</tr>
</tbody>
</table>

Figure 10. Test setup and results from 200MHz – 1GHz.

Conclusion

Test results show nominal differences between the two different attachment configurations.

For more information on the X2Y® Technology used in power filtering applications, circuit configurations and benefits go to www.x2y.com, or use the contact information at the end of this application note to get answers to questions that are unique to your application.

Note: Performance results reported in this and other application notes can only be achieved with patented X2Y® components sourced from X2Y® licensed manufacturers or their authorized distribution channels.
Direct inquiries and questions about this application note or X2Y® products to x2y@x2y.com or telephone:

X2Y Attenuators, LLC
2730B West 21st Street
Erie, PA 16506-2972

Phone: 814.835.8180
Fax: 814.835.9047

To visit us on the web, go to http://www.x2y.com.