X2Y® Heatsink EMI Reduction Solution

Summary

Many OEM’s have EMI problems caused by fast switching gates of IC devices. For end products sold to consumers, products must meet FCC Class B regulations for radiated emissions. As IC fabrication densities and processing speed increase according to Moore’s Law, electromagnetic radiation has become increasingly more difficult to control.

This application note is a suggested solution for reducing EMI noise from heatsinks attached to microprocessors and other packaged devices using X2Y® components.

The Problem

Before looking at the X2Y® solution, let’s take a closer look at the issues involved.

Issue #1

"Motherboards with fast processors will generate high frequency E and H fields from currents and voltages present in the component silicon and signal traces"\(^{\text{1}}\). These fields are generated when a time element (switching rate) is involved in conjunction with the parasitic inductance of conductors such as wires, traces or planes, which carry current in a system (di/dt).

Issue #2

A typical heatsink design involves an insulating material that is used to bond the heatsink structure to the device package. If the microprocessor and the heatsink have different voltage potentials (dv/dt), the insulating material acts like a dielectric which combines to form a capacitor (Figure 1). "Parasitic" coupling (Cp) between the heatsink and device package allows current propagation (di/dt) which results in the heatsink becoming a radiating antenna.

![Figure 1. Heatsink is shown with parasitic coupling.](image)

Current EMI Reduction Solutions

There are a variety of ways to reduce the radiated emissions. One technique involves total containment of the emissions by an encapsulating structure such as a Faraday cage\(^{2}\). With this technique, electromagnetic interference (EMI) is

\(^{1}\) "Motherboards with fast processors will generate high frequency E and H fields from currents and voltages present in the component silicon and signal traces."

\(^{2}\) "Parasitic" coupling (Cp) between the heatsink and device package allows current propagation (di/dt) which results in the heatsink becoming a radiating antenna.

DISCLAIMER: Information and suggestions furnished in this document by X2Y Attenuators, LLC are believed to be reliable and accurate. X2Y Attenuators, LLC assumes no responsibility for its use, nor for any infringements of patents or other rights of third parties which may result from its use. X2Y® is a registered trademark. All other brand or product names mentioned in this document are trademark or registered trademarks of their respective holders. These notes are subject to change without notice. Copyright © X2Y Attenuators, LLC all rights reserved.
contained within the cage structure and cannot escape to the outside world (left Figure 2).

Figure 2. A Faraday cage can be used to contain radiated emissions.

A ‘complete’ Faraday cage is optimal but not always practical due to design limitations and cost. In some instances a complete cage is not necessary to meet compliance. The solution is often a combination of mechanical structures that form a ‘quasi-Faraday cage’ (right Figure 2). An example of this would be: the heatsink+ the board ground layer + a grounding frame = Faraday cage.

Another solution is to decouple the microprocessor from the heatsink with capacitance. Decoupling is “an element that is a loss-less path for direct current and infinite impedance for alternating current. This element allows devices to be powered with no loss and prevents any noise from moving from one load to the next”\(^3\). This technique requires a large numbers of capacitors (bulk, high frequency ceramics) that are placed in parallel to the switching IC (µP) to provide enough local energy supply to mitigate the di/dt transients. This reduces the magnitude of the changing voltage waveform and the corresponding current through the “parasitic” capacitance.

Parasitics inductance inherent to standard capacitor structures and interconnects used to make the connection between the power source and load, combine to reduce decoupling effectiveness and limit this technique.
EMI problems with heatsinks are similar to EMI problems with DC motors. Figure 3 illustrates the comparison and outlines circuit similarities.

DC Motor Circuit
- Active switching device (motor)
- Parasitic capacitance from windings to motor housing
- Ground plane is represented by motor housing
- Motor housing can either float or be grounded
- Full or partially enclosed

Heatsink/µP circuit
- Active switching device (microprocessor)
- Parasitic capacitance from package to heat sink
- Ground plane is represented by heatsink
- Heatsink can either float or be grounded
- Full or partially enclosed

Figure 3. DC motors and heatsink applications generate EMI for similar reasons.

X2Y® is currently solving problems for the automotive industry by reducing EMI in DC motors to meet the industry’s stringent, self-imposed EMC regulations. The X2Y® circuit is used to reduce the RF noise from DC motors so that EMI does not affect the other electronic circuitry in automobiles.

How Does X2Y® Reduce EMI?

The internal structure of X2Y® reduces the parasitics associated with standard capacitors. X2Y® eliminates the DC motor noise by canceling the opposing voltage waveforms present on the power leads. If noise is already present on the leads, opposing noise currents cancel within the component. This cancellation promotes fast switching within the X2Y® component structure. The combination of fast switching, cancellation, and reduced parasitics significantly reduces the need for capacitance and results in broadband frequency decoupling performance with a single X2Y® component.
An important feature of this cancellation process for both applications is no requirement to be grounded. The reason that grounding is not necessary is similar to reasons outlined by Ott4; a nearby conducting plane (in this case, the motor housing or heatsink, Figure 4) will have an equivalent image of the differential and common mode currents that flows in opposition. A proper low impedance attachment of the X2Y® component will provide broadband cancellation of these currents and significantly reduces the radiated emissions. Therefore the X2Y® solution provides the flexibility to either float or ground the heatsink. This would be an ideal benefit in situations where grounding the heatsink is not possible.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Motor Housing, Heatsink, or Metal Layer are conductive and can be thought of as an Image Plane.}
\end{figure}

\section*{X2Y® Application}

The implementation of the X2Y® component in each circuit (Figure 5) would be the same. An X2Y® component attachment should have the shortest leads possible to the power and return leads. The X2Y® G1/G2 terminations would also have a low inductance connection to the heatsink/ground frame structure. Proper connection allows X2Y® to cancel noise internal to the device, rather than provide a traditional short to ground (shunt).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{X2Y® attachment concept. Note: Picture does not depict actual attachment.}
\end{figure}
Conclusion

The use of heatsinks continues to increase as more and more active devices are used in the PCB environment. X2Y® represents a new approach to the problem of EMI reduction for EMC compliance. The X2Y® solution requires minimal overall changes to a product’s design, which offers a cost effective solution.

Note: Performance results reported in this and other application notes can only be achieved with patented X2Y® components sourced from X2Y® licensed manufacturers or their authorized distribution channels.

References

2. “Assembly & Packaging Power, EMI and Thermal Management in One Unit”. John Baliga, Associate Editor, Semiconductor International.

Contact Information

Direct inquiries and questions about this application note or X2Y® products to x2y@x2y.com or telephone:

X2Y Attenuators, LLC
2730B West 21st Street
Erie, PA 16506-2972

Phone: 814.835.8180
Fax: 814.835.9047

To visit us on the web, go to http://www.x2y.com.