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Basic PDS Model — Source, Path, Receiver

Technology In Balance
WHERE SIGNAL INTEGRITY MEETS EMC

= Source — power supplied to PCB
= Path — PCB planes
= Recelver — ICs

= Ensure “clean” power
= Supply instantaneous current for switching IC
= Filter high frequency transients

= Capacitors
Large value Caps — supply energy
High Freq. Caps — Filter
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What are PDS design issues?

Technology In Balance
WHERE SIGNAL INTEGRITY MEETS EMC

= Inductance = Signal Integrity (SI)
= Caps = Number of vias
= Vias (routing)
= Component mounting = Manufacturing cost
. PCB plane (multiple plane PCBs)

. Package = Functionality

= PCB real-estate
= Number of caps & vias
= Location/effectiveness
= Placement cost
= Multiple power planes

04/26/05 - © X2Y Attenuators, LLC. - 10th Annual Automotive Electronics Reliability Workshop 3



WHERE SIGNAL INTEGRITY MEETS EMC

Technology In Balance

Power Distribution System (PDS) [EXAMPLE]
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Steve Weir, Scott McMorrow, Teraspeed® Consulting Group LLC, “High Performance FPGA Bypass Filter Networks,” DesignCon

2005, Santa Clara, CA, February 2005.
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Inductance — Typical Cap Approach

Tech nology-ln Balance

WHERE SIGNAL INTEGRITY MEETS EMC
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s  Smaller is better — 0603 has less inductance than 0805, 1206, 1812.

= To meet total capacitance requirements typically small caps increase the
number of caps needed. (Package size limits number of layers.)

= Larger number of caps require more vias & greater distance from IC.
(More PCB space)

D.L. Sanders, J.P. Muccioli, A.A. Anthony, and D.J. Anthony, “X2Y® Technology Used for Decoupling,” Published by the IEE, New
EMC issues in Design: Techniques, Tools and Components Event Symposium, April 28, 2004.
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Integrated Passive Device (IPD)

Tech nology-ln Balance

WHERE SIGNAL INTEGRITY MEETS EMC

= X2Y® Technology Circuit 1 Circuit 2
.. . i Pwr 1 G . Pwr & - -
= Capacitive Circuit l J
L —
=« Circuit 1 — 3 conductor =
Pwr 2 &

= Circuit 2 — 2 conductor
= 4 terminal device

= Layout attachment is inter-
digitated

= Unless noted, X2Y® is Circuit 2
for this presentation

= |IDC™

= 8 terminal device
= Terminals are inter-digitated

04/26/05 - © X2Y Attenuators, LLC. - 10th Annual Automotive Electronics Reliability Workshop 6



Tech nology-ln Balance

WHERE SIGNAL INTEGRITY MEETS EMC

Cap-only Performance Test Set-up

Duty Cycle Freguency
= Caps mounted to 50
> 50/50 » 100 kHz
ohm coplanar PCB. > 80120 > 1MHz
» 10 MHz
= Shunt-through . . .
Rise/Fall time Amplitude
measurements > Lns > 5V
> 5ns > 22V
= |nput waveform below i~
DUTs
Volt. Rating
Type Cap. Value (uF) (VDC) Dielectric Package
Aluminum electrolytic Capacitor 1.0 50 AL EL B
Aluminum electrolytic Capacitor 2.2 50 AL EL B
Aluminum electrolytic Capacitor 4.7 50 AL EL C
Aluminum electrolytic Capacitor 10 50 AL EL D
Aluminum electrolytic Capacitor 47 50 AL EL G
Aluminum electrolytic Capacitor 100 50 AL EL G
8 & = Tantalum Chip Capacitor 1.0 16 Tan A
Frequency = 1fperiod Tantalum Chip Capacitor 2.2 16 Tan A
Tantalum Chip Capacitor 4.7 16 Tan A
5 Tantalum Chip Capacitor 10 16 Tan B
o Tantalum Chip Capacitor 47 16 Tan D
S Duty Tantalum Chip Capacitor 100 16 Tan D
i Cvel MLCC 1.0 10 Y5V 0603
ycle MLCC 2.2 16 Y5V 0805
(High) MLCC 4.7 10 Y5V 0805
MLCC 10 10 Y5V 1206
g 3 o MLCC 47 6.3 X5R 1210
Z ko] MLCC 100 6.3 X5R 1812
g g Eall ¢ Rise _ MLC(.Z 0.1 16 X7R 0603
- o Time Time InterDigitated Capacitors (IDC) MLCC 1.0 10 Y5V 0612
E 4 E InterDigitated Capacitors (IDC) MLCC 2.2 10 X5R 0612
Reverse Aspect Ratio, MLCC (Low-inductance) 0.22 10 Y5V 0306
Duty Reverse Aspect Ratio, MLCC (Low-inductance) 1.0 10 X5R 0508
1 Cycle Reverse Aspect Ratio, MLCC (Low-inductance) 1.0 16 X5R 0612
(LOW) Rated Total
X2Y MLCC 0.47 0.94 16 X7R 1206
T o5 X2Y MLCC 0.56 1.12 25 X7R 1210
X2Y MLCC 0.47 0.94 63 X7R 1812
X2Y MLCC 0.82 1.64 10 X7R 1206
X2Y MLCC 0.82 1.64 16 X7R 1210
- X2Y MLCC 1.0 2.0 25 X7R 1812
0.00E+00 5.00E-09 1.00E-08 1.50E -08 2.00E-08 2.50E-08 3.00E-08 X2Y MLCC 5.0 10 10 Y5V 1210
Time (zec) X2Y MLCC 6.5 13 16 Y5V 1210

Sanders, Muccioli, North, and Slattery, “ The Quantitative Measurement of the Effectiveness of Decoupling Capacitors in Controlling
Switching Transients from Microprocessors,” CARTS 2005 USA, Palm Springs, CA, March 2005.
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Technology BT DA Electrolytic & Tantalum Capacitors

WHERE SIGNAL INTEGRITY MEETS EMC

0.8
|

= Electrolytic 1.0uF "B"

- Electrolytic 47.0uF "G"
= Tantalum 1.0uF "A"
Tantalum 47.0uF "D"

Anplitude (volts)
o

-0.8 T T T T T
0.00E+00 5.00E-08 1.00E-07 1.50E-07 2.00E-07 2.50E-07 3.00E-07

Time (sec)

= 80/20 duty cycle, 10 MHz, 1 ns rise/fall time, 5 V amplitude
= 47 uF needed to “smooth” ripple
= Minimal HF transient suppression.

Sanders, Muccioli, North, and Slattery, “ The Quantitative Measurement of the Effectiveness of Decoupling Capacitors in Controlling
Switching Transients from Microprocessors,” CARTS 2005 USA, Palm Springs, CA, March 2005.
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Technology In Balance

WHERE SIGNAL INTEGRITY MEETS EMC

Std. MLCC, Reverse-Aspect-Ratio (LL), IDC™ | X2Y®

0.05

0.04 A

0.03 A

0.02 A

0.01 A

-0.01 +

Anrplitude (volts)

-0.02 +

-0.03 -

-0.04 +

01

MLCC 1.0uF 0603
——LL MLCC 1.0uF 0508
— IDC MLCC 1.0uF 0612
- X2Y 0.47uF 1206

-0.05

0.00E+00 5.00E-08 1.00E-07 1.50E-07 2.00E-07 2.50E-07 3.00E-07

Time (sec)
80/20 duty cycle, 10 MHz, 1 ns rise/fall time, 5 V amplitude
1 uF needed to “smooth” ripple
X2Y® & IDC™ suppress HF transients.
Note: X2Y total capacitance value = 0.94uF
Note: Amplitude scale — order of magnitude smaller than previous slide

Sanders, Muccioli, North, and Slattery, “ The Quantitative Measurement of the Effectiveness of Decoupling Capacitors in Controlling
Switching Transients from Microprocessors,” CARTS 2005 USA, Palm Springs, CA, March 2005.
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Additional High Frequency Test #1 — 50/50 Clock

Tech nology-ln Balance

WHERE SIGNAL INTEGRITY MEETS EMC

0.513 IDC 1.0uF 0612
0.512 4 = X2Y 0.56uF 1210
0.511 -

0.51 -

2 ﬁ
N Hﬂ\ﬂ | N

0.502 A
0.501 -

0.5 -

0.499
0.498
0.497
0.496 -
0.495
0.494
0.493 -
0.492 -
0.491 -

0.49 -

Anplitude (voits)

0.489 A
0.488 A
0.487 A
0.486 T T T T T T T T T

0.00E+00 5.00E-08 1.00E-07 1.50E-07 2.00E-07 2.50E-07 3.00E-07 3.50E-07 4.00E-07 4.50E-07 5.00E-07

Time (sec)

= 50/50 duty cycle, 1 GHz, 70 ps rise/fall time
= Note: X2Y total capacitance value = 1.12uF
= Note: Amplitude scale — order of magnitude smaller than previous slide

Data courtesy of Kevin Slattery, Intel Corporation.
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Tech nology-ln Balance

WHERE SIGNAL INTEGRITY MEETS EMC

Anrplitude (volts)

0.513

0.512 +
0.511

0.51 A
0.509 A
0.508 -
0.507 +
0.506 -
0.505 +
0.504 -
0.503 +
0.502 +

0.501
0.5

0.499 -+
0.498 -+
0.497
0.496 -
0.495 +
0.494
0.493
0.492 +
0.491

0.49 A
0.489 -+
0.488 -
0.487

0.486

Additional High Frequency Test #2 - Random

IDC 1.0uF 0612
= X2Y 0.56uF 1210

0.00E+00 2.00E-07 4.00E-07 6.00E-07 8.00E-07 1.00E-06 1.20E-06 1.40E-06 1.60E-06

Time (sec)
Random duty cycle, 1 GHz, 70 ps rise/fall time
Note: X2Y total capacitance value = 1.12uF

Data courtesy of Kevin Slattery, Intel Corporation.
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Insertion Loss Measurements

Technology In Balance

WHERE SIGNAL INTEGRITY MEETS EMC

-10
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s21 [Insertion Loss] (dB)
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-90

0.1 1 10 100 1000 10000
Frequency (MHz)
== Electrolytic 1.0uF "B" == Electrolytic 47uF "G" = Tantalum 1.0uF "A" Tantalum 47uF "D"
= MLCC 1.0uF 0603 IDC MLCC 1.0uF 0612 = X2VY 0.47uF 1206 = X2Y 0.56uF 1210

= Insertion Loss (dB) [S21] taken on Agilent ENA 5071A Network
Analyzer

= Note: X2Y total capacitance value = 0.94uF & 1.12uF respectively

Sanders, Muccioli, North, and Slattery, “ The Quantitative Measurement of the Effectiveness of Decoupling Capacitors in Controlling
Switching Transients from Microprocessors,” CARTS 2005 USA, Palm Springs, CA, March 2005.
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Technology In Balance

WHERE SIGNAL INTEGRITY MEETS EMC

Impedance Measurements

100

—Tant LuF "A"
IDC 1uF 0612
—X2Y 0.47uF 1206

10 -

[Inpecenod

10 100 1000

Frequency (MHZz)

= Impedance measurement taken on Agilent 4396B Impedance Analyzer
= Note: X2Y total capacitance value = 0.94uF

Data courtesy of Kevin Slattery, Intel Corporation.
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Technom;y'i}i ;a,ame What is the Performance benefit of Low-Inductive Caps?

WHERE SIGNAL INTEGRITY MEETS EMC

100

BRI 1T

10 4

[

Impedance [Z]
Impedance [Z]

0.1

N +%
‘‘‘‘‘

o
o

- = (1) MLCC // [0805 (0.1uF)]
- - (2) MLCC // [0805 (0.1uF)]
- - (3) MLCC // [0805 (0.1uF)]

- - (1) MLCC 0805 (0.033uF)
- - (1) MLCC 0805 (0.047uF)
- - (1) MLCC 0805 (0.068uF)
001 - = = (1) MLCC 0805 (0.1uF)

0014 (4) MLCC // [0805 (0.1uF)]
(1) MLCC 0805 (0.15uF) —— (5) MLCC // [0805 (0.1uF)]
= (5) MLCC // (0.398uF total cap)
—— (1) X2Y 1812 (0.22uF) = (1) X2Y 1812 (0.22uF)
0.001 ; } } ! 0.001 ; ; ! ! .
0.01 01 1 10 100 1000 10000 0.01 0.1 1 10 100 1000 10000
Frequency (MHz) Frequency (MHz)

= Each MLCC measured individually = MLCC cumulative measured
= Total (5) MLCC = 0.398uF = Total (5) MLCC = 0.5uF

= X2Y total capacitance value = = X2Y total capacitance value =
0.44uF 0.44uF

= Measurements made on 50ohm Coplanar PCB with Ground Plane.

D.L. Sanders, J.P. Muccioli, A.A. Anthony, and D.J. Anthony, “X2Y® Technology Used for Decoupling,” Published by the IEE, New
EMC issues in Design: Techniques, Tools and Components Event Symposium, April 28, 2004.
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Technology In Balance

WHERE SIGNAL INTEGRITY MEETS EMC

Power Distribution System (PDS) [EXAMPLE]

- o
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Steve Weir, Scott McMorrow, Teraspeed® Consulting Group LLC, “High Performance FPGA Bypass Filter Networks,” DesignCon
2005, Santa Clara, CA, February 2005.

04/26/05 - © X2V Attenuators, LLC. - 10th Annual Automotive Electronics Reliability Workshop 15



http://www.x2y.com/x2y/x2y.nsf/1/HFPGA.pdf/$FILE/HFPGA.pdf

How to Take Advantage of Low-Inductance Caps®?

Tech nology-ln Balance

WHERE SIGNAL INTEGRITY MEETS EMC

= Lower Via/mounting Inductance
= Multiple parallel vias
= Mutual inductance cancellation between vias
= Reduce trace length from cap to via

= Spreading Inductance

= Fewer low-inductance caps are required, therefore caps
can be located closer to ICs.

Induction Loops, X-Y Plane
X2Y vs. Canventional MLCC

Steve Weir, Scott McMorrow, Teraspeed® Consulting Group LLC, “High Performance FPGA Bypass Filter Networks,” DesignCon
2005, Santa Clara, CA, February 2005.
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Technolog;w;;a,am What Does Low-Inductance Caps Do for PDS?

WHERE SIGNAL INTEGRITY MEETS EMC
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s Std. MLCC vs. X2Y® on Xilinx FPGA PCB.

Steve Weir, Scott McMorrow, Teraspeed® Consulting Group LLC, “High Performance FPGA Bypass Filter Networks,” DesignCon
2005, Santa Clara, CA, February 2005.
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Technology In Balance

WHERE SIGNAL INTEGRITY MEETS EMC

Xilinx FPGA PDS Result

Table 1, Mounted Inductance, Comparative Conventional and xX2Y?

Capacitors on Component Side Capacitors on Back side”

H1 0.005 | 0.020 | 0.005 | 0.020 | 0.005 | 0.012 | 0.012 | 0.005 0.005 0.005
H2 0.014 | 0.003 | 0.003 | 0.001 | 0.001 | 0.038 | 0.038 | 0.014 0.003 0.001
S 0.03 0.03 [ 003 |0.03 [0.03 [0.032 |0.044 ]10.03 0.03 0.03
D 0.01 0.01 [0.01 |0.01 |0.01 |[0.02 0.02 ]0.01 0.01 0.01
K1 D/S 0.33 0.33 [0.33 |0.33 |0.33 |[0.63 0.45 10.33 0.33 0.33
L/ via pH 318 393 76 217 40 590 629 1580 1530 1540
L 0603 1052 | 1290 | 662 935 579 1500° | 1760 | 3670 3560 3590
L 0402 952 1190 | 552 835 479 1400 | 1660 | 3570 3460 3490
L X2Y 267 355 117 223 90 435 531° | 1250 1210 1220
Caps req’d 0603 3.9 3.6 5.6 4.2 6.5 3.4 3.3 2.9 2.9 2.9
Caps req’d 0402 3.6 3.3 4.7 3.7 i 3.2 3.1 2.9 2.9 2.9
Caps req’'d X2Y 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Steve Weir, Scott McMorrow, Teraspeed® Consulting Group LLC, “High Performance FPGA Bypass Filter Networks,” DesignCon
2005, Santa Clara, CA, February 2005.
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Technology In Balance

WHERE SIGNAL INTEGRITY MEETS EMC

Multi-Plane PDS Decoupling

= Decoupling multiple power planes on PCB increases the
number of standard caps needed.
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Technology B M Multi-Plane Test Fixture Insertion Loss

WHERE SIGNAL INTEGRITY MEETS EMC
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)
X'y X2Y® Circuit 1 --- Multi-Plane Decoupling

Technology In Balance

WHERE SIGNAL INTEGRITY MEETS EMC

Ch1 & = Ch1
i [—— ] -

Sig. Gen. T ] 1 O-scope

Ch2 & T Ch2

— Ch 1 Input —Ch 1 X2Y

MMWWWMWCthpUt . —Ch 2 X2Y

0.01 4
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Amplitude (volts)

-0.01 4

00000000
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Technology In Balance

WHERE SIGNAL INTEGRITY MEETS EMC

X2Y® Circuit 1 - Multi-Plane Decoupling (crosstalk)

2 Ch1

Ch1 & ) Ch1
Sig. Gen. IEIl O-scope Sig. Gen. O-scope
| _ _ 3 Ch2 | oy Ch2
50 ohms 50 ohms
0.04 - Ch 1 X2Y
Ch 2 X2Y
008 — Crosstalk Board
— Crosstalk X2Y
0.02 -
0.01 -
@
S
)
=
£
1S
<
-0.01
-0.02
-0.03 A
-0.04 . . . . . . .
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Time (sec)
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Conclusion

Technology In Balance
WHERE SIGMAL INTEGRITY MEETS EMC

= IPDs are the foremost capacitor technology that
can supply the instantaneous current needs and
HF transient filtering for ICs.

= NEMI Roadmap shows IPDs offer cost
advantages to OEMs by 2005.

= BOM considerations for IPDs
= Fewer vias
= Fewer solder joints

= Saves PCB space
= Allows for smaller, more dense designs
=« More room for signal routing
« Functionality — plane integrity

= |IPDs are the future for decoupling
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A Questions?

Please Contact:

X2Y Attenuators, LLC
37554 Hills Tech Dr.
Farmington Hills, Ml 48331
248-489-0007
X2y@x2y.com
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