

Electromagnetic Compatibility of Direct Current Motors in an Automobile Environment

Terry North DaimlerChrysler

Keith Frazier Ford Motor Company

Dale L. Sanders and James P. Muccioli X2Y Attenuators, LLC.

Reprinted From: Systems Engineering, Electronics Simulation, Advanced Electronics Packaging, and Electromagnetic Compatibility (SP-1926)

2005 SAE World Congress Detroit, Michigan April 11-14, 2005

400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A. Tel: (724) 776-4841 Fax: (724) 776-5760 Web: www.sae.org

Electromagnetic Compatibility of Direct Current Motors in an Automobile Environment

Terry North DaimlerChrysler

Keith Frazier

Ford Motor Company

Dale L. Sanders, James P. Muccioli

X2Y Attenuators, LLC.

Copyright © 2004 SAE International

ABSTRACT

As the volume and complexity of electronics increases in automobiles, so does the complexity of the electromagnetic relationship between systems. The reliability and functionality of electronic systems in automobiles can be affected by noise sources such as direct current (DC) motors. A typical automobile has 25 to 100+ DC motors performing different tasks. This paper investigates the noise environment due to DC motors found in automobiles and the requirements that automobile manufacturers impose to suppress RF electromagnetic noise and conducted transients.

INTRODUCTION

Direct current (DC) motors in the automotive industry are generally divided into two different types. Brush commutated motors (BC) and electronically commutated motors (EC). BC motors use physical contact between the brushes and commutator to pass direct current to the wire coil around the armature stack. As the commutator rotates physical contact is momentarily broken and reestablished, creating small sparks which is the main source of unwanted RF (radio frequency) noise. EC motors use pulse-width modulated (PWM) signals (electronic switching) to control field effect transistors (FET) that supplies direct current to the wire coil around the armature stack. PWM signals typically contain RF harmonic content (rise/fall transition times) which in combination with radiated fields from FETs is the main source of unwanted RF noise.

Unwanted RF noise can take two forms, radiated and/or conducted. Radiated emission (RE) noise is electromagnetic noise that is emitted from a motor out into free space. Conducted emission (CE) noise is noise transmitted through leads from the motor. Radiated

noise can cause conducted noise or vise versa. Typically, applying electromagnetic compatibility (EMC) suppression will suppress both radiated and conducted noise, however the motor design itself may dictate the type of noise and effectiveness of EMC suppression components.

RF noise is typically defined in terms of the frequency range in which it occurs. If noise occurs in relative limited frequency range it is called narrowband (NB) noise and if noise occurs across a considerable frequency range it is called broadband (BB) noise. For typical unsuppressed DC motors, it is common to have noise from a few hertz to a gigahertz and beyond. However, in that frequency spectrum (hertz – gigahertz) automotive manufacturers generally single out particular frequency bands of interest for suppression.

EMC compliance also includes conducted transient suppression on leads (i.e. power leads, sensor/control leads/buses). The wire coil around the armature stack can be viewed as a lumped inductive element or load. A DC motor in a stall condition (worst-case scenario) that has current applied for a turn-on or turn-off condition results in the creation or collapse of a magnetic field in the coil generating a conducted positive and/or negative transient voltage in excess of several hundred volts. Conducted transients can cause problems with other electronics connected to the leads or with the motor itself. Transients are also a major factor in component specifications (i.e. voltage rating, reliability, stress etc.) used for EMC suppression. (An overview of components and their specifications is discussed later in this paper.)

Before investigating the EMC requirements that DC motors are subject to in the automotive industry, a brief discussion of EMC facilities, set-up, and test methodology should be briefly addressed. Most EMC

testing in the automotive industry is based on CISPR 25. However, each manufacturer has their own adaptation with their own emphasis.

Within the automotive industry the main type of test chamber used is an absorber lined shielded enclosure also known as an anechoic chamber. The anechoic chamber is lined with an electromagnetic absorbing material that reduces wave reflections and moding. Most automotive manufacturers do not require absorbing material on the floor of the chamber, thus the chamber is semi-anechoic. The dimensions (size) and absorbing materials used typically have minimal effect on test measurements which allows for good correlation between chambers.

The test set-up within the chamber, connection, and layout of the device under test (DUT) and equipment can have a substantial effect on the test outcome. It is important to note that test set-ups vary among individual manufacturers.

The type of noise detection also varies among individual automobile manufacturers for conducted and radiated testing. If a motor is close to the accepted limits, the type of detection can mean the difference between passing and failing. The three types of detection used are peak, quasi-peak, and averaging. Peak records the maximum emission value for any set frequency, quasi-peak is weighted for specific charge and discharge time constants of the detector circuit (which is based upon the noise repetition rate) and average detection averages the peak values of a frequency. (The averaging procedure for can vary between manufacturers causing different results.) Peak, quasipeak, and averaging will result in the same levels for narrowband, but vield different results for broadband measurements.

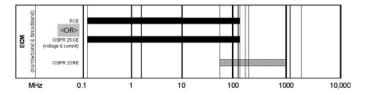
AUTOMOBILE MANUFACTURERS REQUIREMENTS AND STANDARDS

This section discusses the individual EMC requirements of DC motors for DaimlerChrysler, Ford Motor Company, and General Motors. The information within this section has been condensed for each of the respective manufacturers to highlight differences among each manufacturer and present information pertaining only to DC motor requirements. Information provided herein is believed to be accurate as of December 2004.

It should be noted that for the purposes of this paper an effort was made to define common terminology for consistency in the discussion of the individual automobile manufacturer's requirements/specifications. For exact terminology and definitions used in each manufacturer's requirements/specifications refer to original noted requirements/specifications. Additionally, specific information pertaining to exact test set-up or test equipment settings should also refer to the original noted requirements/specifications. As previously discussed, DC motors are classified as either EC motors or BC motors. Automobile manufacturers require different EMC specifications for each classification of motor. Allowable emission levels are typically defined as either global limit levels or regional (North America, Europe, Japan) requirement limit levels.

DAIMLERCHRYSLER (DCX)

This section discusses the EMC requirements of EC motors and BC motors for DaimlerChrysler (DCX). DCX's requirements for each type of motor can be found in:


- <u>DC-10614</u> "EMC Performance Requirements ----Components"
- <u>DS-100</u> "Vehicle Design Requirements for EMC Compliance"
- <u>DC-10615</u> "Electrical System Performance Requirements for Electrical and Electronic Components"

Appendix A, B, and C in this paper gives an overview of the frequency spectrum and limit values.

DCX – EC Motors Radiated and Conducted RF Requirements

The frequency spectrum over which DCX tests EC motors is from 150 kHz to 1 GHz. The spectrum is comprised of conducted emissions from 150 kHz to 110 MHz using either Pin Conducted Emissions (PCE) or both CISPR 25 voltage and current measurement test methods and radiated emissions from 76 MHz to 1 GHz using the CISPR 25 radiated test method. Table 1 illustrates the test methods used across the frequency spectrum.

Table 1: DCX test methods vs. frequency for EC motors. Note that requirements are for specific bands and do not cover entire spectrum, see Appendix B.

Emissions limits for RE and CE tests are defined in two sub-categories, basic limit levels and specific limit levels. The basic limit levels define the broad emissions limits across the frequency spectrum of the employed test method. The specific limit levels denote frequencies of interest that require stricter (lower) emission levels.

Both emissions categories are then further defined in terms of narrowband or broadband limits. (For EC motors both the narrowband and broadband limits apply.)

The type of noise detection allowed for narrowband CE and RE is Peak or Average. For broadband, peak or quasi-peak detection is allowed to 200MHz; beyond 200MHz only peak detection is allowed.


A quick reference of the limit levels can be found in Appendix B of this paper. For exact specifications see below:

- PCE is described in detail in DC-10614 section 6.2.
- CISPR 25 (voltage) is described in detail in DC-10614 section 6.3.
- CISPR 25 (current) is described in detail in DC-10614 section 6.4.
- CISPR 25 (radiated) is described in detail in DC-10614 section 6.5.

DCX – BC Motors Radiated and Conducted RF Requirements

The frequency spectrum over which DCX tests BC motors is from 150 kHz to 200 MHz. The spectrum is comprised of conducted emissions from 150 kHz to 200 MHz using either Pin Conducted Emissions (PCE) or CISPR 25 voltage measurement test method. (Note that radiated emissions are NOT required for BC motors.) Table 2 illustrates the test methods used across the frequency spectrum.

Table 2: DCX test methods vs. frequency for BC motors. Note that requirements are for specific bands and do not cover entire spectrum, see Appendix B.

Conducted emissions limits for both test methods are defined in two categories, basic limit levels and specific limit levels. The basic limit levels define the broad emissions limits across the frequency spectrum of the employed test method. The specific limit levels denote frequencies of interest that require stricter (lower) emission levels.

Both emissions categories are then defined in terms of narrowband or broadband limits. (For BC motors only the broadband limits apply.)

The type of noise detection allowed for the broadband CE is peak or quasi-peak detection.

A quick reference of the limit levels can be found in Appendix B of this paper. For exact specifications see below:

• PCE is described in detail in DC-10614 section 6.2.

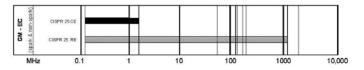
 CISPR 25 (voltage) is described in detail in DC-10614 section 6.3.

DCX – EC and BC Motors Conducted Transient Requirements

EC and BC motors are tested with the fast transient setup from ISO 7637-2. Transient levels are categorized by the system voltage and are required not to exceed limits in Appendix C (DC-10614 section 6.7) regardless of wave shape.

GENERAL MOTORS (GM)

This section discusses the EMC requirements of EC motors, BC motors, and short duration (SD) motors for General Motors (GM). The requirements for GM can be found in:


- <u>GMW3103</u> "General Specification for Electrical/Electronic Components and Subsystems; Electromagnetic Compatibility; Global EMC Component/Subsystem Validation Acceptance Process"
- <u>GMW3097</u> "General Specification for Electrical/Electronic Components and Subsystems, Electromagnetic Compatibility (EMC)"

Appendix A, F, and G in this paper gives an overview of the frequency spectrum and limit values.

<u>GM – EC Motors Radiated and Conducted RF</u> <u>Requirements</u>

The frequency spectrum over which GM tests EC motors is from 150 kHz to 1.583 GHz in 11 specific bands of interest. The requirements include conducted emissions from 150kHz to 1.71MHz using CISPR 25 voltage (via artificial network) test method and radiated emissions in the 150 kHz to 1.583 GHz bands using the CISPR 25 Absorber-Lined Shielded Enclosure (ALSE) method. (GMW 3097 section 3.3.2 and GMW 3097 section 3.3.1 respectively).Table 3 illustrates the test methods used across the frequency spectrum. (Note that GM also allows the use of a reverberation chamber for radiated testing. However, this method of testing will become obsolete as of 01 July 2005 and thus is not covered in this paper.)

Table 3: GM test methods vs. frequency for EC motors. Note that requirements are for specific bands and do not cover entire spectrum, see Appendix F.

Emissions limit levels for each test method are defined based on the type of motor, BC or EC. (GM categorizes BC motors as spark generated noise and EC motors as non-spark generated noise, thus limit levels are defined on that basis.) EC motors are required to meet both

Paper presented at 2005 SAE World Congress in Detroit, MI, April 11 – 14 2005

spark and non-spark generated noise levels for both radiated and conducted emissions.

EC motors are required to be tested as a system with its electronic control modules whether they are internal or external.

The type of noise detection for non-spark radiated and conducted emissions is peak. However if the non-spark emissions limit is exceeded using the peak detector, average detection may be used with a 6 dB more-restrictive non-spark limit (e.g. Peak limit level – 6dB = Average limit level). This is based on the inability to detect the module noise over the arcing noise of a motor when using the PK detector.

For the spark-generated portion of the requirements for EC motors, a quasi-peak (QP) detector is used for both radiated and conducted emissions measurement. (Note that, until July 1, 2005, GM permits conducted emissions to be measured with a peak detector, accompanied by a 13 dB higher allowance for the resultant emissions)

GM – EC Motor Transient Requirements

Test equipment used to test conducted transients shall comply with ISO 7637-1 and ISO 7637-2.3. The test plan is described in GMW3103 and requirements are noted in GMW3097 section 3.5.1.

Motors that may have stall conditions in an automobile are required to be tested in a "stall" condition. EC motors are required to be tested as a system with its electronic control modules whether they are internal or external. Transients are measured directly at the EC motor terminals. If control circuits are inside the EC motor assembly test probes must be place inside the assembly.

The voltage levels of conducted transients are not allowed to exceed +100v or -150v. Requirements are shown in Appendix G of this paper. If should be noted that EC motors may also require conducted transient immunity testing which is outside the scope of this paper.

<u>GM – BC Motors Radiated and Conducted RF</u> <u>Requirements</u>

The frequency spectrum over which GM tests BC motors is from 150 kHz to 439 MHz in various bands of interest. The requirements include conducted emissions from 150kHz to 1.71MHz using CISPR 25 voltage (via artificial network) test method and radiated emissions in the 150 kHz to 439 MHz bands using the CISPR 25 Absorber-Lined Shielded Enclosure (ALSE) method. (GMW 3097 section 3.3.2 and GMW 3097 section 3.3.1 respectively). Table 4 illustrates the test methods used across the frequency spectrum. (Note that GM also allows the use of a Reverberation chamber for radiated testing. However, this method of testing will become obsolete as of 01 July 2005 and thus is not covered in this paper.)

Table 4: GM test method vs. frequency for BC motors. Note that requirements are for specific bands and do not cover entire spectrum, see Appendix F.

BC motors are required to meet only spark generated noise levels for radiated and conducted emissions.

Detection for spark radiated emissions is quasi-peak. However, to reduce test time peak detection may be used as long as emissions are below the quasi-peak levels.

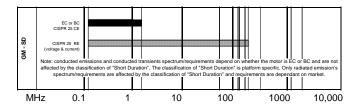
<u>GM – BC Motor Transient Requirements</u>

Test equipment used to test conducted transients shall comply with ISO 7637-1 and ISO 7637-2.3. The test plan is described in GMW3103 and requirements are noted in GMW3097 section 3.5.1.

Motors that may have stall conditions in an automobile are required to be tested in a "stall" condition. Transients are measured directly at the EC terminals.

The voltage levels of conducted transients are not allowed to exceed +100v or -150v. Requirements are shown in Appendix G of this paper.

<u>GM – Short Duration (SD) Motors Radiated Emissions</u> <u>Requirements</u>


Short duration (SD) motor is a special classification that is application specific and therefore determined by individual platforms. SD motors are intermittent motors (e.g. seat, lumbar, door lock motors etc.) discussed in GMW3097 section 3.3. SD motors can be either EC or BC motors. For conducted emissions and conducted transients, the classification of short duration has no effect on requirements. However, for these motors, there is a reduction in the required frequency bands to be tested compared to the standard EC/BC motor requirements.

For SD motors intended for global use by GM, the frequency spectrum 150 kHz to 242.4 MHz using the CISPR 25 radiated test method (GMW 3097 section 3.3.1) (Table 5). For SD motors intended only for the North American market, the frequency range is further reduced to include only the AM broadcast band (530

kHz to 1.71 MHz). The limits in these bands remain the same as for the general BC/EC motors.

(Note that GM also allows the use of a Reverberation chamber for radiated testing. However, this method of testing will become obsolete as of 01 July 2005 and thus is not covered in this paper.)

Table 5: GM test method vs. frequency for SD motors. Note that requirements are for specific bands and do not cover entire spectrum, see Appendix F.

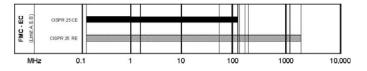
Radiated emissions limit levels for SD motors are shown in Appendix F of this paper or in GMW 3097 section 3.3.1.

The type of noise detection for spark radiated emissions is quasi-peak. However, to reduce test time peak detection may be used as long as emissions are below the quasi-peak levels.

Limit levels for conducted emissions and conducted transients can also be found in this paper in Appendix F and G or in GMW 3097 sections 3.3.2 and 3.5 respectively.

FORD MOTOR COMPANY (FMC)

This section discusses the EMC requirements of EC motors, BC motors, and SD (short duration) motors for Ford Motor Company (FMC). The requirements for FMC can be found in:


• <u>ES-XW7T-1A278-AC</u> "Component and Subsystem Electromagnetic Compatibility Worldwide Requirements and Test Procedures" 10 October 2003.

Appendix A, D, and E in this paper gives an overview of the frequency spectrum and limit values.

<u>FMC – EC Motor Radiated and Conducted RF</u> <u>Requirements</u>

The frequency spectrum over which FMC tests EC motor is from 150 kHz to 2.5 GHz. The spectrum is comprised of conducted emissions from 150 kHz to 108 MHz using CISPR 25 test method and radiated emissions from 150 kHz to 2.5 GHz using the CISPR 25 radiated test method. Table 6 illustrates the test methods used across the frequency spectrum.

Table 6: FMC test method vs. frequency for EC motors. Note that requirements are for specific bands and do not cover entire spectrum, see Appendix D.

Specific information on conducted emissions for EC motors can be found in ES-XW7T-1A278-AC section 8.0. Requirements are mandatory by all FMC vehicles worldwide unless specific exclusions are granted in writing by the vehicle program chief engineer. The type of detection used for conducted emissions limits is quasi-peak. Requirements are shown in Appendix D of this paper.

Specific information on radiated emissions for EC motors can be found in ES-XW7T-1A278-AC section 7.0. Radiated emissions limit levels are linked directly to specific RF service bands that are segmented into Level 1 and Level 2 requirements. Level 1 requirements are required by all FMC vehicles worldwide. Level 2 requirements are mandatory by all FMC vehicles worldwide unless specific exclusions are granted in writing by the vehicle program chief engineer. The limits for each of Level 1 and 2 are subdivided in to two limits (Limit A and Limit B) depending on the component (motor) being tested. For EC motors both Limit A and Limit B are required.

The type of detection used for Limit A is peak. However, average detection may be used. If average detection is used, the limit level requirements become more restrictive. The peak limit levels shown in Appendix D Limit A are reduced by 6dB to define the average detection limit levels (Peak limit level – 6dB = Average limit level). For Limit B, the type of detection used is quasi-peak.

Ford – EC Motor Transient Requirements

Specific information on conducted emissions for ECs can be found in ES-XW7T-1A278-AC section 9.0. Motors that may have stall conditions in an automobile are required to be tested in a "stall" condition. Transients are measured directly at the EC terminals. ECs are not to exceed +100 and -150 voltage amplitudes. Requirements are shown in Appendix E.

Ford – BC Motor Radiated and Conducted RF Requirements

The frequency spectrum over which FMC tests BC motors is from 150 kHz to 2.5 GHz. The spectrum is comprised of conducted emissions from 150 kHz to 108 MHz using CISPR 25 test method and radiated emissions from 150 kHz to 2.5 GHz using the CISPR 25 radiated test method. Table 7 illustrates the test methods used across the frequency spectrum.

Paper presented at 2005 SAE World Congress in Detroit, MI, April 11 – 14 2005

Table 7: FMC test method vs. frequency for BC motors. Note that requirements are for specific bands and do not cover entire spectrum, see Appendix D.

Specific information on conducted emissions for BC motors can be found in ES-XW7T-1A278-AC section 8.0. Requirements are mandatory by all FMC vehicles worldwide unless specific exclusions are granted in writing by the vehicle program chief engineer. The type of detection used for conducted emissions limits is quasi-peak. Requirements are shown in Appendix D.

Specific information on radiated emissions for BC motors can be found in ES-XW7T-1A278-AC section 7.0. Radiated emissions limit levels are linked directly to specific RF service bands that are segmented into Level 1 and Level 2 requirements. Level 1 requirements are required by all FMC vehicles worldwide. Level 2 requirements are mandatory by all FMC vehicles worldwide unless specific exclusions are granted in writing by the vehicle program chief engineer. The limits for each of Level 1 and 2 are subdivided in to two limits (Limit A and Limit B) depending on the component being tested. For ECs only Limit B levels are required. The type of detection used for Limit B is quasi-peak. Requirements are shown in Appendix D.

Ford – BC Motor Transient Requirements

Specific information on conducted emissions for BC motors can be found in ES-XW7T-1A278-AC section 9.0. Motors that may have stall conditions in an automobile are required to be tested in a "stall" condition. Transients are measured directly at the BC terminals. BCs are not to exceed +100 and -150 voltage amplitudes. Requirements are shown in Appendix E.

EMC SUPPRESSION COMPONENTS

Components used for EMC suppression are either surface mounted components (SMC) or leaded components. Both have advantages and disadvantages that should be considered.

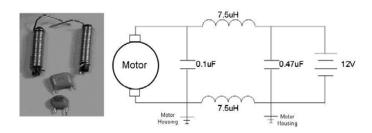
Leaded components are easier to place during manufacturing and can be soldered almost anywhere. However, parasitic impedance from the leads can severely limit the effective frequencies of operation along with the way the leads are bent and placed.

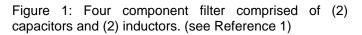
SMC do not have leads, thus they typically have higher and broader effective operating frequencies. The trade off of SMC is that they require a printed circuit board (PCB) to be mounted to. With EC motors this is not a concern since EC motors already have circuitry on PCBs; but implementation of SMC in BC motors that do not have a brush card design may require more design thought. (If BC motors use a brush card instead of cantilevered brush springs or have other circuitry on a PCB, this may be a moot point.)

Most types of EMC suppression components come in both leaded and surface mount configurations. When possible, SMC should generally be used in order to meet current and future automotive requirements.

Other considerations for selecting an EMC suppression component that should be specified in the design are:

- Frequency range of operation
- Voltage rating (DC voltage breakdown)
- Failure mode (open or short)
- Temperature operating range
- Reliability
- Stress test results
- ESD rating
- Impulse/surge test results
- Component balance


Discussed in Table 8 are the general advantages and disadvantages of components typically used for EMC suppression in the automotive industry.


Table 8: Comparison of typical EMC suppression components.

Capacitor							
Advantages	Disadvantages						
Leaded or surface mount	 Narrow filtering band (requires multiple 						
Low cost	components for broadband						
Availability	filter)						
Can provide some transient suppression	Requires multiple components for both common						
• Failure mode "open"	mode and differential mode noise filtering Low cost						
Feed Thru C	hip Capacitor						
Advantages	Disadvantages						
Broad filtering band	Surface mount only						
	Cost						
	Failure mode is "short"						
	Adds DC resistance						

 Broad filtering band (effective below 300- 500MHz) Filter both common mode and differential mode noise Mode (effective below 300- 500MHz) Broad filtering band (effective below 300- 500MHz) Cost Size Amp freq satu Size (Advantages) Cost Size (Common Mode Choke (I Advantages) Broad filtering band (effective below 300- 500MHz) Cost Broad filtering band (effective below 300- 500MHz) Broad filtering band (effective below 300- 500MHz) Broad filtering band (effective below 300- 500MHz) Cost Metal Oxide Varistor Advantages Transient clamping Cos (No I Inte can clan No I Inte can clan No I Essitt (Componet Advantages Statu No I Inte can clan No I Fail X2Y[®] Componet Advantages Broad filtering band (DC – 6GHz) Surf 	Ferrite Beads																																										
 Easy implementation Broad filtering band (effective below 300- 500MHz) Filter both common mode and differential mode noise Filter both common mode and differential mode noise Mode Coss Inductor (Wound Iron Advantages Broad filtering band (effective below 300- 500MHz) Cost Cost Advantages Broad filtering band (effective below 300- 500MHz) Cost Gott Advantages Broad filtering band (effective below 300- 500MHz) Cost Metal Oxide Choke (I Advantages Broad filtering band (effective below 300- 500MHz) Qua tole Metal Oxide Varistor Advantages Transient clamping Cos No I Inte can clan Kata Low cost transient clamping Les tran No I Fail X2Y[®] Componer Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode 	Disadvantages																																										
 Broad filtering band (effective below 300- 500MHz) Filter both common mode and differential mode noise Inductor (Wound Iron Advantages Broad filtering band (effective below 300- 500MHz) Cost Cost Gost Qua tole Common Mode Choke (I Advantages Broad filtering band (effective below 300- 500MHz) Cost Gost High (effective below 300- 500MHz) Size Amy freq satu Qua tole Broad filtering band (effective below 300- 500MHz) Broad filtering band (effective below 300- 500MHz) Qua tole Metal Oxide Varistor Advantages Transient clamping Cos No I Inte can clan Low cost transient clamping Les tran No I Fail X2Y[®] Componer Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode 	h temperatures cause																																										
(effective below 300- 500MHz) • Size • Filter both common mode and differential mode noise • Mod • Inductor (Wound Iron Advantages • Higl (effective below 300- 500MHz) • Higl satu • Cost • Advantages • Higl satu • Cost • Qua tole • Broad filtering band (effective below 300- 500MHz) • Higl satu • Cost • Qua tole • Broad filtering band (effective below 300- 500MHz) • Higl satu • Broad filtering band (effective below 300- 500MHz) • Higl satu • Metal Oxide Varistor • Qua tole Metal Oxide Varistor • Qua tole • Transient clamping • Cos • No I • Transient clamping • Cos • No I • Low cost transient clamping • Les tran • Low cost transient clamping • Les tran • Low cost • No I • Erail X2Y [®] Componet • Advantages • Atta • Low cost • Atta • Single component filters 2 power leads • Atta	uration																																										
 Filter both common mode and differential mode noise Mode Coss Inductor (Wound Iron Advantages Broad filtering band (effective below 300-500MHz) Cost Cost Size Amy freq sature Qua tole Common Mode Choke (I Advantages Broad filtering band (effective below 300-500MHz) Cost High (effective below 300-500MHz) Qua tole Broad filtering band (effective below 300-500MHz) Broad filtering band (effective below 300-500MHz) Qua tole Metal Oxide Varistor Advantages Transient clamping Coss No I Inte can clam Advantages Store Fail X2Y[®] Component filters 2 power leads Filters both common mode 	e is determined by																																										
 Filter both common mode and differential mode noise Mode Cost Inductor (Wound Iron Advantages Broad filtering band (effective below 300-500MHz) Cost Size Advantages Cost Stratue Quatole Advantages Broad filtering band (effective below 300-500MHz) Cost Quatole Advantages Broad filtering band (effective below 300-500MHz) Guatole Advantages Broad filtering band (effective below 300-500MHz) Quatole Metal Oxide Varistor Advantages Transient clamping Cos No I Intecan clam Advantages Low cost transient clamping Less transient clamping Low cost transient clamping K2Y[®] Componet Advantages Broad filtering band (DC – 6GHz) Single component filters 2 power leads Filters both common mode 	peres – prevent low quency magnetic																																										
 Moc Cos Inductor (Wound Iror Advantages Broad filtering band (effective below 300- 500MHz) Cost Size Amp freq satu Qua tole Common Mode Choke (I Advantages Broad filtering band (effective below 300- 500MHz) Broad filtering band (effective below 300- 500MHz) Broad filtering band (effective below 300- 500MHz) Qua tole Metal Oxide Varistor Qua tole Metal Oxide Varistor Advantages Transient clamping Cos No I Inte can clan Low cost transient clamping Less tran No I Fail X2Y[®] Component Surf 6GHz) Low cost Single component filters 2 power leads Filters both common mode 	uration																																										
Inductor (Wound Iror Advantages Broad filtering band (effective below 300- 500MHz) • High satu Cost • Size Cost • Qua tole Common Mode Choke (I Advantages • High satu Broad filtering band (effective below 300- 500MHz) • High satu Broad filtering band (effective below 300- 500MHz) • High satu Qua tole • Qua tole Metal Oxide Varistor • Qua tole Advantages • Cos • Transient clamping • Cos • No I • Inte can clan Zener Diode Advantages • Low cost transient clamping • Les tran • No I • Fail X2Y [®] Componer • Atta Advantages • Atta • Low cost • Surf 6GHz) • Low cost • Surf 6GHz) • Low cost • Atta • Single component filters 2 power leads • Atta • Filters both common mode • Atta	derate filtering attenuation																																										
Advantages - Broad filtering band (effective below 300- 500MHz) - Cost - Cost - Common Mode Choke (I Advantages - Broad filtering band (effective below 300- 500MHz) - Broad filtering band (effective below 300- 500MHz) - Metal Oxide Varistor - Advantages - • Transient clamping • Transient clamping • No I • Inte can clan Zener Diode - Advantages - • No I • Inte can clan Zener Diode - Advantages - • Low cost transient clamping • Low cost transient clamping • Low cost transient clamping • Surd • Surd • Surd • Advantages • Low cost • Surd • Atta •	st																																										
 Broad filtering band (effective below 300- 500MHz) Cost Size Amy freq satu Size Amy freq satu Qua tole Qua tole Advantages Broad filtering band (effective below 300- 500MHz) Broad filtering band (effective below 300- 500MHz) Qua tole Metal Oxide Varistor Qua tole Metal Oxide Varistor Advantages Transient clamping Cos No I Inte can clan Zener Diode Advantages Low cost transient clamping Les tran No I Fail X2Y[®] Componer Advantages Broad filtering band (DC – 6GHz) Single component filters 2 power leads Filters both common mode 	Inductor (Wound Iron Core)																																										
(effective below 300- 500MHz) satu • Cost Amy freq satu • Cost Qua tole Common Mode Choke (I Advantages • High satu • Broad filtering band (effective below 300- 500MHz) • High satu • Oura tole • Qua tole Metal Oxide Varistor • Qua tole Advantages • Cos • No I • Transient clamping • Cos • No I • Inte can clan • No I • Low cost transient clamping • Les tran • Low cost transient clamping • Les tran • Low cost transient clamping • Les tran • Low cost • No I • Broad filtering band (DC – 6GHz) • Surf 6GHz) • Low cost • Atta • Single component filters 2 power leads • Atta • Filters both common mode • Atta	Disadvantages																																										
 Cost Size Amy freq satu Qua tole Common Mode Choke (I Advantages Broad filtering band (effective below 300- 500MHz) Qua tole Metal Oxide Varistor Qua tole Metal Oxide Varistor Qua tole Transient clamping Cos No I Inte can clan Transient clamping Low cost transient clamping Less tran No I Fail X2Y[®] Componen Advantages Broad filtering band (DC – 6GHz) Single component filters 2 power leads Filters both common mode 	h temperatures cause uration																																										
freq Satu • Quatole Common Mode Choke (I Advantages • Broad filtering band (effective below 300- 500MHz) • High satu • Quatole 500MHz) • Quatole Metal Oxide Varistor Advantages • Transient clamping • Cos • No I • Intecan can • Low cost transient clamping • Low cost transient clamping • Low cost transient clamping • Low cost • No I • Fail X2Y [®] Componer Advantages • Broad filtering band (DC – 6GHz) • Low cost • Surf 6GHz) • Low cost • Single component filters 2 power leads • Filters both common mode	e is determined by																																										
Satu • Quatol Common Mode Choke (I Advantages • Broad filtering band (effective below 300- 500MHz) • Higl satu • Quatol 500MHz) • Quatol • Quatol • Quatol • Oliol • No I • Intecan • Cos • Advantages • Less • Low cost • No I • Advantages • No I • Advantages • Atta • Broad filtering band (DC – 6GHz) • Surf • Low cost • Atta </th <th>peres – prevent low</th>	peres – prevent low																																										
tole Common Mode Choke (I Advantages • • Broad filtering band (effective below 300- 500MHz) • High satue • Quatole • Quatole 500MHz) • Quatole Metal Oxide Varistor • Quatole Advantages • • • Transient clamping • Cos • No I • Intecan clan Zener Diode Advantages • No I • Low cost transient clamping • Less tran • Low cost transient clamping • Less tran • No I • Fail X2Y [®] Componer • Surf • Broad filtering band (DC - 6GHz) • Surf • Low cost • • Atta • Single component filters 2 power leads • • • • Filters both common mode • • •	quency magnetic uration																																										
Common Mode Choke (I Advantages Broad filtering band (effective below 300- 500MHz) • Higl satu • Qua tole Metal Oxide Varistor Advantages • Transient clamping • Cos • No I • Inte can clan Zener Diode Advantages • Low cost transient clamping • Low cost transient clamping • Les tran • No I • Fail X2Y [®] Componer Advantages • Broad filtering band (DC – 6GHz) • Single component filters 2 power leads • Filters both common mode	ality materials and erance add cost																																										
Advantages • Broad filtering band (effective below 300- 500MHz) • Higl satu • Quatole 500MHz) • Quatole • Quatole • Metal Oxide Varistor Advantages • Transient clamping • Cos • No I • Intercan clan Zener Diode Advantages • Low cost transient clamping • Low cost • Broad filtering band (DC – 6GHz) • Broad filtering band (DC – 6GHz) • Surf 6GHz) • Low cost • Single component filters 2 power leads • Filters both common mode																																											
(effective below 300- 500MHz) satu Quatole Quatole Metal Oxide Varistor Advantages Advantages • Cos • Transient clamping • Cos • Intecan • Intecan clan • Intecan clan • Intecan clan • Intecan Advantages • Les • Low cost transient clamping • Les • Low cost transient clamping • Les • Advantages • No I • Broad filtering band (DC – 6GHz) • Surf • Low cost • Atta • Single component filters 2 power leads • Atta • Filters both common mode • Surf	Disadvantages																																										
Advantages Transient clamping Advantages Transient clamping Cos No Inte can clam Zener Diode Advantages Low cost transient clamping Less tran No Fail X2Y [®] Componer Advantages Broad filtering band (DC – GGHz) Low cost Single component filters 2 power leads Filters both common mode	h temperatures cause uration																																										
Metal Oxide Varistor Advantages • Transient clamping • Cos • Inte can clan • Inte can • Inte can <tr <="" th=""><th>ality materials and erance add cost</th></tr> <tr><th>Advantages • Transient clamping • Cos • No I • Inte can clam Zener Diode Advantages • Low cost transient clamping • Less tran • No I • Transient clamping • Low cost transient clamping • Less tran • No I • Fail X2Y[®] Componet Advantages • Broad filtering band (DC – 6GHz) • Low cost • Surf 6GHz) • Low cost • Single component filters 2 power leads • Filters both common mode</th><th></th></tr> <tr><th>Transient clamping Cos No I Inte can clam Zener Diode Advantages Low cost transient clamping Less tran No I Fail X2Y[®] Componer Advantages Broad filtering band (DC – GHz) Low cost Single component filters 2 power leads Filters both common mode</th><th></th></tr> <tr><th>No I No I No I Inte can clan Zener Diode Advantages Low cost transient clamping Less tran No I Fail X2Y[®] Componen Advantages Broad filtering band (DC – GHz) Low cost Single component filters 2 power leads Filters both common mode</th><th>Disadvantages</th></tr> <tr><th>Inter can clam Caner Diode Advantages Low cost transient clamping Less tran No I Fail X2Y[®] Componer Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode</th><th></th></tr> <tr><th>can Advantages Advantages Low cost transient clamping • Low cost transient clamping • Low cost transient clamping • Advantages • Rail X2Y[®] Component Advantages • Broad filtering band (DC – 6GHz) • Low cost • Surf • Surf • Surf • Single component filters 2 power leads • Filters both common mode</th><th>broadband filtering</th></tr> <tr><th>Zener Diode Advantages • Low cost transient clamping • Less tran • No I • Fail X2Y[®] Componer • Advantages • Broad filtering band (DC – 6GHz) • Surf • Low cost • Atta • Single component filters 2 power leads • Filters both common mode</th><th>ernal energy dissipation</th></tr> <tr><th>Advantages • Low cost transient clamping • Les: tran • No I • Fail X2Y[®] Component Advantages • Broad filtering band (DC – 6GHz) • Low cost • Single component filters 2 power leads • Filters both common mode</th><td>mping performance</td></tr> <tr><th>Low cost transient clamping Less tran No I K2Y[®] Componen Advantages Broad filtering band (DC – GHz) Low cost Single component filters 2 power leads Filters both common mode</th><th></th></tr> <tr><th>tran No l Fail X2Y[®] Componer Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode</th><th>Disadvantages</th></tr> <tr><th>Fail X2Y[®] Componen Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode</th><th>ss robust over repeated nsient strikes</th></tr> <tr><th>X2Y[®] Component Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode</th><th>broadband filtering</th></tr> <tr><th>Advantages • Broad filtering band (DC – 6GHz) • Surf • Low cost • Atta • Single component filters 2 power leads • Filters both common mode</th><th>lure mode unpredictable</th></tr> <tr><th> Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode </th><th>nt</th></tr> <tr><th> 6GHz) Low cost Single component filters 2 power leads Filters both common mode </th><th>Disadvantages</th></tr> <tr><th> Low cost Single component filters 2 power leads Filters both common mode </th><th>face mount only</th></tr> <tr><th>power leadsFilters both common mode</th><th>actiment location is childal</th></tr> <tr><th>Filters both common mode</th><th></th></tr> <tr><th></th><th></th></tr> <tr><th>Component tolerances inherent</th><th></th></tr> <tr><th>Some transient suppression</th><th></th></tr> <tr><th></th><th>rface mount only achment location is critical</th></tr>	ality materials and erance add cost	Advantages • Transient clamping • Cos • No I • Inte can clam Zener Diode Advantages • Low cost transient clamping • Less tran • No I • Transient clamping • Low cost transient clamping • Less tran • No I • Fail X2Y [®] Componet Advantages • Broad filtering band (DC – 6GHz) • Low cost • Surf 6GHz) • Low cost • Single component filters 2 power leads • Filters both common mode		Transient clamping Cos No I Inte can clam Zener Diode Advantages Low cost transient clamping Less tran No I Fail X2Y [®] Componer Advantages Broad filtering band (DC – GHz) Low cost Single component filters 2 power leads Filters both common mode		No I No I No I Inte can clan Zener Diode Advantages Low cost transient clamping Less tran No I Fail X2Y [®] Componen Advantages Broad filtering band (DC – GHz) Low cost Single component filters 2 power leads Filters both common mode	Disadvantages	Inter can clam Caner Diode Advantages Low cost transient clamping Less tran No I Fail X2Y [®] Componer Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode		can Advantages Advantages Low cost transient clamping • Low cost transient clamping • Low cost transient clamping • Advantages • Rail X2Y [®] Component Advantages • Broad filtering band (DC – 6GHz) • Low cost • Surf • Surf • Surf • Single component filters 2 power leads • Filters both common mode	broadband filtering	Zener Diode Advantages • Low cost transient clamping • Less tran • No I • Fail X2Y [®] Componer • Advantages • Broad filtering band (DC – 6GHz) • Surf • Low cost • Atta • Single component filters 2 power leads • Filters both common mode	ernal energy dissipation	Advantages • Low cost transient clamping • Les: tran • No I • Fail X2Y [®] Component Advantages • Broad filtering band (DC – 6GHz) • Low cost • Single component filters 2 power leads • Filters both common mode	mping performance	Low cost transient clamping Less tran No I K2Y [®] Componen Advantages Broad filtering band (DC – GHz) Low cost Single component filters 2 power leads Filters both common mode		tran No l Fail X2Y [®] Componer Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode	Disadvantages	Fail X2Y [®] Componen Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode	ss robust over repeated nsient strikes	X2Y [®] Component Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode	broadband filtering	Advantages • Broad filtering band (DC – 6GHz) • Surf • Low cost • Atta • Single component filters 2 power leads • Filters both common mode	lure mode unpredictable	 Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode 	nt	 6GHz) Low cost Single component filters 2 power leads Filters both common mode 	Disadvantages	 Low cost Single component filters 2 power leads Filters both common mode 	face mount only	power leadsFilters both common mode	actiment location is childal	Filters both common mode				Component tolerances inherent		Some transient suppression			rface mount only achment location is critical
ality materials and erance add cost																																											
Advantages • Transient clamping • Cos • No I • Inte can clam Zener Diode Advantages • Low cost transient clamping • Less tran • No I • Transient clamping • Low cost transient clamping • Less tran • No I • Fail X2Y [®] Componet Advantages • Broad filtering band (DC – 6GHz) • Low cost • Surf 6GHz) • Low cost • Single component filters 2 power leads • Filters both common mode																																											
Transient clamping Cos No I Inte can clam Zener Diode Advantages Low cost transient clamping Less tran No I Fail X2Y [®] Componer Advantages Broad filtering band (DC – GHz) Low cost Single component filters 2 power leads Filters both common mode																																											
No I No I No I Inte can clan Zener Diode Advantages Low cost transient clamping Less tran No I Fail X2Y [®] Componen Advantages Broad filtering band (DC – GHz) Low cost Single component filters 2 power leads Filters both common mode	Disadvantages																																										
Inter can clam Caner Diode Advantages Low cost transient clamping Less tran No I Fail X2Y [®] Componer Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode																																											
can Advantages Advantages Low cost transient clamping • Low cost transient clamping • Low cost transient clamping • Advantages • Rail X2Y [®] Component Advantages • Broad filtering band (DC – 6GHz) • Low cost • Surf • Surf • Surf • Single component filters 2 power leads • Filters both common mode	broadband filtering																																										
Zener Diode Advantages • Low cost transient clamping • Less tran • No I • Fail X2Y [®] Componer • Advantages • Broad filtering band (DC – 6GHz) • Surf • Low cost • Atta • Single component filters 2 power leads • Filters both common mode	ernal energy dissipation																																										
Advantages • Low cost transient clamping • Les: tran • No I • Fail X2Y [®] Component Advantages • Broad filtering band (DC – 6GHz) • Low cost • Single component filters 2 power leads • Filters both common mode	mping performance																																										
Low cost transient clamping Less tran No I K2Y [®] Componen Advantages Broad filtering band (DC – GHz) Low cost Single component filters 2 power leads Filters both common mode																																											
tran No l Fail X2Y [®] Componer Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode	Disadvantages																																										
Fail X2Y [®] Componen Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode	ss robust over repeated nsient strikes																																										
X2Y [®] Component Advantages Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode	broadband filtering																																										
Advantages • Broad filtering band (DC – 6GHz) • Surf • Low cost • Atta • Single component filters 2 power leads • Filters both common mode	lure mode unpredictable																																										
 Broad filtering band (DC – 6GHz) Low cost Single component filters 2 power leads Filters both common mode 	nt																																										
 6GHz) Low cost Single component filters 2 power leads Filters both common mode 	Disadvantages																																										
 Low cost Single component filters 2 power leads Filters both common mode 	face mount only																																										
power leadsFilters both common mode	actiment location is childal																																										
Filters both common mode																																											
Component tolerances inherent																																											
Some transient suppression																																											
	rface mount only achment location is critical																																										

Figures 1 - 4 show some common production EMC suppression filters comprised of different components. Figure 5 shows the radiated emission suppression performance of each filter component combination.

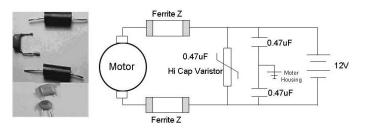


Figure 2: Five component filter comprised of (2) capacitors, (1) varistor, and (2) ferrites. (see Reference 1)

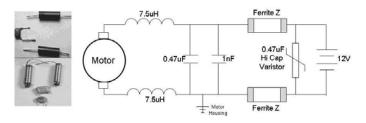


Figure 3: Seven component filter comprised of (2) capacitors, (2) inductors, (2) ferrites, and (1) varistor. (see Reference 1)

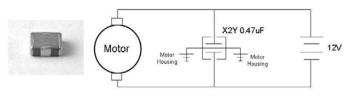
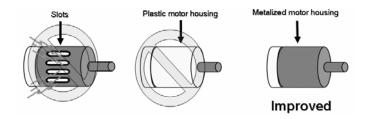
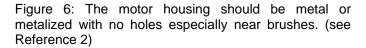


Figure 4: One component filter comprised of (1) X2Y. (see Reference 1)

Figure 5: Radiated emission performance of filters in Figures 1 - 4. (see Reference 1)

DC MOTOR DESIGN FOR ELECTROMAGNETIC COMPATIBILITY (EMC)


With every design decision, trade offs are made. This section tries to highlight key discussions made during the design phase that knowingly or unknowingly affect EMC suppression.


Addressing EMC early in the design process gives motor designers more options for suppression techniques. This allows cost to be the driving consideration. When EMC problems develop at the end of the design process, meeting requirements becomes the driving consideration where production retooling, engineering resources and available fixes affect profitability.

In order for cost to drive EMC suppression techniques, it is important for automotive manufacturers to insure that all tier suppliers are aware of the requirements and a common strategy and responsibility is developed. Typically only first tier suppliers get mandates for EMC requirements; however DC motors are usually designed, built, and supplied by second and third tier suppliers. If EMC requirements only become known to second and third tier suppliers when production problems develop, cost for EMC suppression grows exponentially.

DESIGNING THE HOUSING

The most important decision is the motor housing. The housing should be metal or metalized and encompass both the magnets and brushes. Thickness of the metal or metalized material should be considered not just for mechanical and magnetic performance purposes but should also include shielding properties. Slots or holes in the housing should be eliminated or minimized near the brushes to keep from making them a "slot antenna" (Figure 5). Figure 6 shows the radiated emission performance between two motors, one with a slot near the brushes and the other without the slot. Both have an X2Y component inside for filtering.

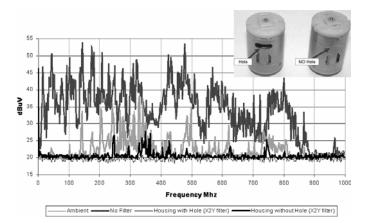


Figure 7: Radiated emission results of a motor with a hole near the brushes and one without a hole. Both motors have an X2Y filter component inside. (see Reference 3)

DESIGNING END CAPS

The end cap should also be metal or metalized to contain electromagnetic fields. Also, note that the design of the crimping tabs used to attach the end cap may couple noise if contact is made from inside and outside the housing, low electrical impedance is critical in this mechanical interface (Figure 8).

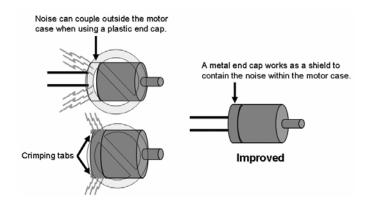


Figure 8: End caps should also be metal or metalized. The critical parameter is the location of the brushes with respect to the end cap. (see Reference 2)

LEAD LOCATION

Leads or connector pins that exit the housing should be close together to reduce the current loop. This also allows easier implementation of filter components (Figure 9). Figure 10 shows the radiated emission results of leads apart versus together.

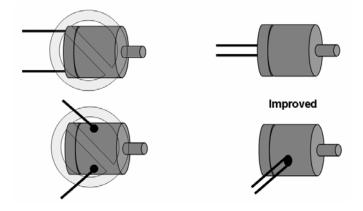


Figure 9: Diagram of preferred lead placement. (see Reference 2)

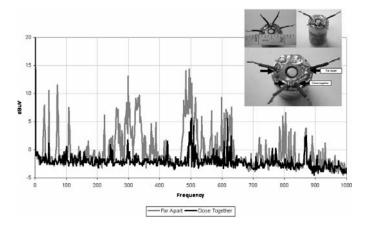


Figure 10: Radiated emission results of leads close together and far apart. Both tests use an X2Y filter component. (see Reference 4)

ELECTRICAL JOINTS

Joints are typically only designed with mechanical strength in mind. Electrical conductivity and shielding should also be considered. Joints should overlap and be interlocking. Oxidization and galvanic action should be prevented at the joints. Paint, powder coating, and oils should also be removed to promote conductivity over the frequency spectrum needed to be filtered (Figure 11).

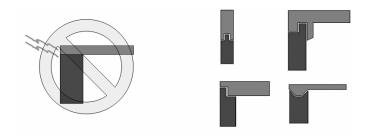


Figure 11: Joints on motors should be designed not only for mechanical strength but to also have a lowimpedance electrical path. (see Reference 2)

Filter components should be located just inside or outside the motor housing where leads exit. This keeps noise from coupling around the filter. Traces or leads that come to the filer should be minimized in length to reduce impedance and ensure noise gets to the filter. Depending on the application, filter components may need a non-conductive coating to protect from brush dust or a conductive carbon path (salt path) that may form over time.

CONCLUSION

Future trends in EMC DC motor suppression will require lower emission levels, have more frequencies of interest, and a broader frequency spectrum. In addition, as automobile manufacturers become more globalized they are moving toward universal modules across platforms. For motors, this means regional requirements will become global requirements.

Planning early in the motor design and having all tier suppliers aware of requirements is the key for cost effective EMC suppression.

Finally, over the past few years FMC, DCX, and GM have worked toward common requirements in many areas. Should this trend continue, a common EMC requirement for DC motors could benefit both the automobile manufacturers and suppliers. Having common requirements would streamline the design efforts of suppliers and provide for larger potential markets (multiple platforms and manufacturers). For automobile manufacturers it would promote competition and cost savings while ensuring specifications are meet.

ACKNOWLEDGMENTS

The authors of this paper would like to thank Mark Steffka and Don Seyerle from General Motors for their contributions, support, and time reviewing this paper. In addition, we would also like to thank Doug Walz at Johnson Electric for his support and time in reviewing this paper.

REFERENCES

- J.P. Muccioli, A.A. Anthony, W.M. Anthony, D. S. Walz, "Broadband Testing of Low Cost Filter Solutions for DC Motors," Electrical Manufacturing & Coil Winding Association Expo 2000, Cincinnati, OH. November 01, 2000.
- 2. "X2Y[®] Technology in DC Motors," Technical Presentation. <u>www.x2y.com</u>.
- 3. "DC Motor Design with X2Y[®] Example B," Application Note # 4003. <u>www.x2y.com</u>.
- 4. "DC Motor Design with X2Y[®] Example C," Application Note # 4004. <u>www.x2y.com</u>.

ADDITIONAL SOURCES

<u>DC-10614</u> "EMC Performance Requirements ---Components," Draft 7-29-2004, revision B.

<u>DC-10615</u> "Electrical System Performance Requirements for Electrical and Electronic Components," Date Published: 2003-05.

<u>DS-100</u> "Vehicle Design Requirements for EMC Compliance," Draft 27 Feb 2004.

<u>GMW3103</u> "General Specification for Electrical/Electronic Components and Subsystems, Electromagnetic Compatibility, Global EMC Component/Subsystem Validation Acceptance Process," August 2001.

<u>GMW3097</u> "General Specification for Electrical/Electronic Components and Subsystems Electromagnetic Compatibility (EMC)," February 2004.

<u>ES-XW7T-1A278-AC</u> "Component and Subsystem Electromagnetic Compatibility Worldwide Requirements and Test Procedures," Date Issued: October 10, 2003.

D.L. Sanders, J.P. Muccioli, A.A. Anthony, D.S. Walz, and D. Montone, "Using Image Planes on DC Motors to Filter High Frequency Noise," International IEEE EMC Symposium 2004, Santa Clara, CA. August 09 – 13, 2004.

J.P. Muccioli, A.A. Anthony, W.M. Anthony, D.S. Walz, "Broadband KuTEM Omni-Cell Testing of Small DC Motors for a Low Cost Filter Solution," International IEEE EMC Symposium, Washington D.C. August 21 – 25, 2000.

"DC Motor Design with X2Y[®]," Application Note # 4001. <u>www.x2y.com</u>. "DC Motor Design with X2Y[®] Example A," Application Note # 4002. <u>www.x2y.com</u>.

"Transient Suppression in a 12v DC Motor," Application Note #4005. <u>www.x2y.com</u>.

"DC Motor EMI Suppression: Presented at Ford Motor Company July 27, 2004," Technical Presentation. <u>www.x2y.com</u>.

DEFINITIONS, ACRONYMS, ABBREVIATIONS

BB: Broadband

BC: Brush Commutated/spark generated (DC motor)

CE: Conducted Emission

CT: Conducted Transient

DC: Direct Current

DCX: DaimlerChrysler

DUT: Device Under Test

EC: Electronically Commutated/non-spark generated (DC motor)

EMC: Electromagnetic Compatibility

FET: Field Effect Transistor

FMC: Ford Motor Company

GM: General Motors

NB: narrowband

PCB: Printed Circuit Board

PWM: Pulse Width Modulated

RE: Radiated Emission

RF: Radio Frequency

SD: Short-Duration (DC Motor)

SM: Surface Mount

APPENDIX A – OVERVIEW OF FREQUENCY SPECTRUM REQUIREMENTS FOR DC MOTORS. (NOTE THAT REQUIREMENTS ARE FOR SPECIFIC BANDS IN THE FREQUENCY SPECTRUM SHOWN, SEE APPENDIX B, D, AND F FOR DETAILS.)

ပ္ထ	banc	PCE														
DCX - BC	oroad	<or></or>														
	(only broadband)	CISPR 25 CE (voltage & current)														
`	J	(,														
-	(pue															
0 ·	badba	PCE <or></or>														
Ш.	& bro	CISPR 25 CE														
DCX - EC	(narrowband & broadband)	(voltage & current)														
	ILLOW	CISPR 25 RE														
	eu)															
BC 1	only)	CISPR 25 CE														
GM - BC	(spark only)	CISPR 25 RE														
	s)	CISPR 25 RE														
:	ب ک															
ပ္ပ	(spark & non-spark)	CISPR 25 CE														
GM - EC	& nor															
ס :	oark	CISPR 25 RE														
`	s)													_		
		EC or BC														
		CISPR 25 CE														
SD		CISPR 25 RE									_					
GM - SD		(voltage & current)														
		Note: conducted en affected by the clas														
		spectrum/requ	uire	ments are affected	l by	the classification	of "Short Duratio	on" and	d re	equ	ireme	nts are depe	nda	ant c	on market.	
0	<u>ک</u>															
B B	B onl	CISPR 25 CE														
FMC - BC	(Limit B only)	CISPR 25 RE														
	_															
С Ш С	(& B)	CISPR 25 CE														
FMC - EC	(Limit A & B)															
Œ ;		CISPR 25 RE														
			1 1	A		_			<u>ר</u>	<u>וו</u>	1	4.00	L⊥ ∖∽		40.00	
Μ	H	z 0.1	1	1		1	0	1(J	J		100	JÜ)	10,00	JÜ

Paper presented at 2005 SAE World Congress in Detroit, MI, April 11 – 14 2005

APPENDIX B – DCX RADIATED AND CONDUCTED RF EMISSIONS FOR EC & BC MOTORS.

			D	CX - EC R	F Emissior	าร			D	CX - BC RF	Emissio	ns
	PCE	(CE)	1	(CE volts)	i	CE current)	CISPR	25 (RE)		(CE)		(CE volts)
	-	vel Limits		vel Limits	•	vel Limits		vel Limits		vel Limits		evel Limits
	NB Limit (dBuV) P or AV	BB Limit (dBuV) P or QP	NB Limit (dBuV) P or AV	BB Limit (dBuV) P or QP	NB Limit (dBuV) P or AV	BB Limit (dBuV) P or QP	NB Limit (dBuV) P or AV	BB Limit (dBuV) P or QP		BB Limit (dBuV) P or QP		BB Limit (dBuV) P or QP
	FOLAV	FOLGE	POLAV		quirements	ForQF	F OLAV	F OI QF		Global Requ	uirements	F OF QF
0.15 - 0.5	104 to 70	114 to 80	94 to 70	104 to 80	68 to 44	78 to 54				114 to 80		104 to 80
0.5 - 6.3	70	80	70	80	38	48				80		80
6.3 - 30	60	70	60	70	26	36				70		70
30 - 110	50	60	50	60	16	26				<u> </u>		60
30 - 200 76 -200							40	50		60		60
200 - 400							45	55		<u> </u>		
400 - 1000							50	60				
	Specific L	evel Limits	Specific L	evel Limits	Specific L	evel Limits		evel Limits	Specific L	evel Limits	Specific L	evel Limits
			ND Limit Value	BB Limit Value	NB Limit Value	BB Limit Value	NB Limit Value					BB Limit Value
	• •	BB Limit (dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)		BB Limit (dBuV)		(dBuV)
	P or AV	P or QP	P or AV		P or QP		P or AV					
		· · · · · · · · ·			quirements					Global Requ	uirements	
0.15 - 0.28	94 to 76	104 to 88	50	60	30	40				104 to 88		60
0.53 - 1.7	60	70	34	50 40	6 -1	22				70		50 40
5.8 - 6.3 30 - 54	50 40	60 50	33 24	24	-1 -6	6				60 50		24
30 - 54 65 -108	40	50	24 24	24	-ь -10	6 -10				50 50		24
76 - 108	40	30	24	24	-10	-10	12	12				24
140 - 180		50		24		-10	12	12		50		24
380 - 430						10	12	24				
430 - 433							8					
433 - 435							6					
435 - 438							8					
420 - 520							18	32				
869 - 894							18	36				
925 - 960							18	36				
		1			quirements					Europe Req	uirements	
7.1 - 7.6	40	60	33	40	-1	6				60		40
9.3 - 10.0	40	60	33	40	-1 -1	6				60		40
11.5 - 12.1	40 40	60 60	33 33	40 40	-1	6 6				60 60		40 40
13.6 - 13.8 15.0 - 15.7	40	60	33	40	-1	6				60		40
25 - 30	40	50	24	24	-6	6				50		24
41 - 65	40	50	24	24	-10	-10				50		24
84.015 -												
87.255	30		12		-16							
174 - 230							18	18				
180 - 200		50		24		-10				50		24
470 - 700								32				
700 - 862							<u>.</u>	36				
470 - 862							24					
147 - 164 84.015 -							0					
84.015 - 87.255							0					
87.255 167.56 -												
169.38							0					
172.16 -												
173.98							0					
				North America	Requirements					North America	Requirements	
30 - 54	33		12		-6							
140 - 180							0					
310 - 314							8					
314 - 316							6					
316 - 320							8					
							42	30				
310 - 320							12		_			
420 - 520							14					
420 - 520 869 - 894												
420 - 520				Janan Bar	uiremente		14			Japan Perr	iromonte	
420 - 520 869 - 894 925 - 960		16		Japan Rec	quirements			12		Japan Requ	irements	
420 - 520 869 - 894 925 - 960 90 - 108		46		Japan Rec	quirements			12 32	_	Japan Requ 46	irements	
420 - 520 869 - 894 925 - 960 90 - 108 470 - 700		46		Japan Rec	quirements			32	_		irements	
420 - 520 869 - 894 925 - 960 90 - 108 470 - 700 700 - 770		46		Japan Rec	uirements		14	32 36			lirements	
420 - 520 869 - 894 925 - 960 90 - 108 470 - 700		46		Japan Rec	uirements			32			lirements	

APPENDIX C – DCX CONDUCTED TRANSIENT EMISSIONS FOR EC & BC MOTORS.

DCX Conducted Transient							
System Voltage	Polarity	Max. Aplitude					
12v and 42v	Positive Negative	(+) 80v (-) 80v					
24v	Positive Negative	(+) 80v (-) 150v					

APPENDIX D – FMC RADIATED AND CONDUCTED RF EMISSIONS FOR EC & BC MOTORS.

	FMC - EC Moto	r RF Emis	sions	FMC - BC Motor RF Emissions				
	CISPR 25 (CE volts)	CISPR	25 (RE)	CISPR 25 (CE volts)	CISPR 25 (RE)			
	Level Limits	Level	Limit 1	Level Limits	Level Limit 1			
	Limit Value (dBuV) QP	Limit A Value (dBuV/m) P	Limit B Value (dBuV) QP	Limit Value (dBuV) QP	Limit B Value (dBuV) QP			
		quirements	QP	Global Rec				
30 - 75		52 to 42	62 to 52		62 to 52			
75 - 400		42 to 53	52 to 63		52 to 63			
400 - 1000		53	63		63			
		Level	Limit 2		Level Limit 2			
		Limit A Value (dBuV/m)	Limit B Value (dBuV)		Limit B Value (dBuV)			
	Global Ber	quirements	QP	Global Red	QP nuirements			
0.53 - 1.71	66	Juliements	30	66	30			
65.2 - 88.1	00	12	24	00	24			
86.6 - 109.1		12	24		24			
87.5 - 108	36	12	<u> </u>	36				
140.6 - 176.3		12	24		24			
310 - 320		20	30		30			
429 - 439		25	30		30			
470 - 890		24	32		32			
1567 - 1574		50 to 10						
1574 - 1576		10						
1576 - 1583		10 to 50						
2400 - 2500		25						
	•	quirements		Europe Re	quirements			
0.15 - 0.28	80		41	80	41			
172.4 - 242.4		12	24		24			
	North America	Requirements		North America	-			
45.2 - 47.8		12	24		24			
2320 -2345		25						
	Japan Rec	quirements		Japan Rec				
75.2 - 90.9		12	24		24			
76 - 90	36			36				

APPENDIX E – FMC CONDUCTED TRANSIENT EMISSIONS FOR EC & BC MOTORS.

FMC Conducted Transient						
Polarity	Max. Aplitude					
Positive	(+) 100v					
Negative	(-) 150v					

APPENDIX F – GM RADIATED AND CONDUCTED RF EMISSIONS FOR EC & BC MOTORS.

[GM - ECM RF Emissions			GM - BCM R	F Emissions	GM - BCM RF Emissions		
	CISPR 25 (CE volts)	CISPR 25 (RE)		CISPR 25 (CE volts) CISPR 25 (RE)		CISPR 25 (CE volts)	CISPR 25 (RE)	
	Level Limits	Level	Limits	Level Limits	Level Limits	Level Limits	Level Limits	
	N-S Limit Value (dBuV)	N-S Limit Value (dBuV/m)	S Limit Value (dBuV)	S Limit Value (dBuV)	S Limit Value (dBuV)	S Limit Value (dBuV)	S Limit Value (dBuV)	
	Р	Р	QP	QP	QP	see EC or BC limit levels	QP	
				Global Rec	uirements			
0.53 - 1.71	42	30	24	50	24		24	
65.2 - 88.1		12	24		24			
86.6 - 109.1		12	24		24		24	
140.6 - 176.3		12	24		24			
310 - 320		20	30		30	see EC or BC limit levels		
429 - 439		25	30		30			
1567 - 1574		50 to 10						
1574 - 1576		10						
1576 - 1583		10 to 50						
					quirements			
0.15 - 0.28	73	41	63	80	63	see EC or BC limit levels	63	
172.4 - 242.4		12	24		24		24	
				North America				
45.2 - 47.8		12	24		24	see EC or BC limit levels		
				Japan Rec				
75.2 - 90.9		12	24		24	see EC or BC limit levels	24	

APPENDIX G – GM CONDUCTED TRANSIENT EMISSIONS FOR EC & BC MOTORS (INCLUDING SD MOTORS).

GM Conducted Transient							
Polarity	Max. Aplitude						
Positive	(+) 100v						
Negative	(-) 150v						