

Technology In Balance

Common Mode Filters

X2Y[®] Capacitors

VS.

Common Mode Filters

Contents

- Common and Differential Mode Noise
- Mode Conversion
- Filter Solutions
- Test Comparisons
- Comparative Applications
- X2Y Capacitor Selection Methodology
- Mounting Suggestions

Common Mode and EMI

- Most EMI compliance problems are common mode emissions.
- Only 10's of uAs in external cables are enough to violate EMC standards.

Common Mode Radiated Noise Model

Power Source

- E field developed between any lead exiting a shielded enclosure and the enclosure outer skin radiates.
- Complementary H field couples to victim antennae.
- Ability to radiate depends on:
 - Power in the noise source
 - Coupling efficiency between the effective antenna structure and the surrounding space
 - Leads and case form the antenna

Common Mode Radiated Noise Model

• Device w/o metallic case: "CM" develops between dominant external metal, such as Vss solid polygon, or hatch.

Common Mode Radiated Noise Model

- Reduce radiation by:
 - Reducing potential between the case and leads, AND/OR
 - Reducing coupling efficiency to surrounding space
 - Reduce antenna gain.
 - Mismatch source impedance to the antenna impedance.

Reduce CM Source Power

- Reduce HF current in product
 - Rarely an option
- Decrease shunt impedance to case
 - Optionally insert additional series impedance between source and shunt
 - Effectiveness requires low impedance compared to the source and antenna.

Reduce Coupling

- Reduce antenna efficiency
 - Cable length
 - Cable routing / shielding
- Mismatch antenna impedance
 - Increase driving impedance
 > 377 Ohms*
 - Inserted Z effective when >> Z_{SOURCE} + Z_{ANTENNA}
 - Decrease driving impedance << 377 Ohms*
 - Inserted Z effective when << Z_{ANTENNA}
- Antenna impedance may be anywhere from 10's to 100's of Ohms
 Typically 100 – 180 Ohms

EMI Filter Attenuation

© X2Y Attenuators, LLC Confidential Information

Differential Mode Radiated Noise Model

• Voltage(s) between multiple leads that form an antenna in the area between.

Mode Conversion

- Occurs when individual filters are not matched.
- Differential signal energy converts into commonmode energy.
- Common-mode energy converts into differential energy.
- Avoid by matching filters throughout stop-band.
- Not an emissions concern where signals do not exist in the noise stop band.
- Mode conversion is a susceptibility concern at all frequencies.

Single Chokes / Beads as EMI Filters

- Chokes attenuate noise emissions when they substantially increase the total noise source impedance relative to the antenna impedance.
 - Insertion loss in dB is:
 - $20LOG((Z_S + Z_A)/(Z_S + Z_A + Z_{CHOKE}))$
- Bead impedance is limited by effective parallel resistance.
 - 600 Ohm bead max insertion loss:
 - -17dB: 50Ω source / 50Ω antenna
 - -12dB: 50Ω source / 150Ω antenna
- Chokes and beads limited at high frequency by parasitic mounted capacitance.
 - Device & mounting structure capacitance in parallel
 - PCB layout & adjacent components can defeat insertion loss

CM Choke Mechanics

- A CM choke couples chokes on a common core
 - Usually two windings / core.
 - Coupling improves CM rejection on each lead in the stop band,
 - CM chokes can pass differential signals in the stop band.
- A CM choke is a 1:1 transformer where the primary and secondary are both driven.
 - Both windings act as both primary and secondary.
 - Current through one winding induces an opposing current in the other winding.
 - For K close to 1.0, total effective CM impedance is:
 - $Z \approx 2\pi F^* L_{MAG}$
 - 2X what two independent chokes with the same L_{MAG} would yield.

1:1 Transformer, 0.95 <= K <= 0.99

CM Choke Mechanics

- CM choke winding coupling **DOES NOT** cancel all or even a high percentage of CM noise.
- CM chokes DO increase CM inductance up to 2X compared to each of two independent chokes of the same open circuit inductance rating.
- CM chokes **DO** cancel most core flux allowing much higher CM currents w/o saturation than two independent chokes of the same material and core size.
 - Allows DC and AC to pass as differential currents w/o killing CM attenuating inductance
 - Important to power filter applications that use chokes
 - DC balance must be maintained in wiring and load.

CM CHOKE DC FLUX CANCELLATION

CM Choke Mechanics

- Just as with individual chokes / beads, parasitic capacitance limits the effective frequency range of CM chokes.
- For a given core material, the higher the inductance used to obtain lower frequency filtering, the greater the number of turns required and consequent parasitic capacitance that defeats high frequency filtering.
- At frequencies > F_{SRF}, parasitic capacitance defeats impedance gain from coupled windings.

Capacitor current bypasses the transformer coupling. At frequencies > F_{RES} impedance is capacitive and low.

Choke/Bead/CM Choke Bandstop

- Insertion loss declines past F_{SRF} due to parasitic shunt capacitance.
 - Parasitic capacitance, noise source impedance and lead antenna impedance define high frequency noise attenuation.
 - Parasitic capacitance is combined effects of the CM Choke and the CM Choke PCB mount.
 - Very small capacitances, < 1pF can have very big effects above 100MHz
 - 1pF Limits 1GHz Insertion Loss:
 - -8dB: 50Ω source / 50Ω antenna
 - $-5dB: 50\Omega$ source / 150Ω antenna
- $F_{SRF} = 1/(2\pi(V(L_{CM}*C_{PAR})))$

CM Chokes Winding Mismatch

- Mismatch between windings from mechanical manufacturing tolerance causes mode conversion.
 - A percentage of signal energy converts to common mode, and vice-versa.
 - This gives rise to EMC issues as well as immunity issues.
- Mismatch reduces the effective inductance in each leg.

-
$$L_{EFF} \approx L_{MAG} * (1+K_{MATCH})$$

 $- 0.9 < K_{MATCH} < 0.99$

CMCs Stop Band Mode Conversion

- Parasitic capacitance and winding mismatch both defeat inductive cancellation in the stop band causing mode conversion.
- Not a major radiation concern where signal energy is negligible in the stop band.
 - Conditions under which a shunt filter is a viable alternative.

CMCs Mode Conversion Susceptibility

- ESD discharge onto case induces common mode voltage onto cables.
 - Standard test waveform
 leading edge knee frequency:
 300-500MHz
- Mode conversion increases susceptibility of internal circuits to outside noise:
 - 1% Magnetics mismatch =>
 2% of CM voltage appears as
 difference voltage across
 leads
- Similar mechanics for power leads.

CMCs Mode Conversion Susceptibility

- At frequencies above filter F_{SRF}, voltage passed through each winding depends on:
 - Choke parasitic capacitance,
 - Layout, and
 - IC input matching.
- Add transient voltage suppression devices, TVS, to protect ICs / power system

 $K_2^*V_{CM}$

ESD Return

CM Chokes as EMI Filters

- CM chokes have one really good application:
 - Signals must be passed that operate in the same frequency range as CM noise that must be suppressed.
 - Mode conversion and winding mismatch is a major concern in these applications.
- Otherwise: CM chokes are: large, heavy, expensive, and subject to vibration induced failure.
- Estimating CM performance
 - Example: 4.7mH L_{CM} , 3pF C_{PAR} :
 - $F_{SRF} = 1.3 MHz$
 - IL_{dBMAX} = 20LOG(100/8.4E6)
 - ≈ -52dB

X2Y[®] Capacitors, Nearly Ideal Shunts

- Two closely matched capacitors in one package.
 - Effects of temperature and voltage variation eliminated
 - Effect of ageing equal on both lines
- Very low inductance between terminals.

X2Y[®] Capacitors, Nearly Ideal Shunts

- When properly applied, X2Y[®] capacitors filter CM noise by both attenuating source energy, and mismatching antenna impedance.
- The key is very low, and matched inductance.
- Proper application must mind inductance in the common path: G1/G2 terminals.

X2Y[®] Capacitors, Nearly Ideal Shunts

- X2Y[®] capacitor shunts between A, B, and G1/G2 attachments.
 - Component inductance is very low:
 - \approx 110pH from each A or B to G1/G2.
- Low impedance shunt serves two purposes:
 - Divides noise voltage
 - Mismatches external antenna impedance
 - Reflects inside noise back inside
 - Reflects external noise: EFT/ESD back towards outside.
- Performance is typically limited by external capacitor mounting inductance relative to protected traces and RF common:
 - L3A/L3B, L4A, L4B
 - Minimize w/ best practices
 - See slides 52-54 for technique
 - RF common is the case for metallic enclosures.
 - RF common is circuit common for non-metallic enclosures

X2Y[®] Circuit 1 CM Filter

5/21/2011

X2Y[®] Bandstop

- Insertion loss builds up to F_{SRF} due to parallel capacitance.
- Insertion loss declines past
 F_{SRF} due to parasitic
 common inductance.
- Y capacitor mismatch reduces insertion loss below F_{SRF.}
 - Increases low frequency cutoff by $\approx 2/(1 + K_{MATCH})$
 - $0.9 < K_{MATCH} < 0.99$
 - Generally no concern

Insertion Loss Characteristics X2Y[®] Capacitor

© X2Y Attenuators, LLC Confidential Information

X2Y[®] vs. CM Choke Bandstop

X2Y[®] Bandstop

- **Insertion Loss:** •
 - $20LOG(Z_{x2y}/(Z_{x2y}+(Z_{SOURCE}||Z_{ANTENNA})))$
- Low frequency performance determined ٠ by X2Y[®] capacitance.
 - Increase capacitance as required to set filter lower cut-off frequency.
- High frequency attenuation determined • by:
 - Mounted capacitor common inductance. _
 - Essentially constant across X2Y[®] values. _
- Insertion Loss @1GHz
 - Using 4mil top dielectric PCB
 - -24dB: 50 Ω Z_{SOURCE} / 50 Ω Z_{ANTENNA}
 - -27dB: 50Ω Z_{SOURCE} / 150Ω Z_{ANTENNA}
- Unique X2Y[®] advantage: •
 - Larger capacitors do not hurt HF performance.

X2Y[®] Capacitor 0dB -10dB Low Frequency Cut-off Set by CM CHOKE 10nF Capacitor Value -20dB 22nF 47nF -30dB X2Y[®] High Frequency Performance -40dB Depends On = 50 Ohms ZSOURCE Mounted Inductance = 50 Ohms ZANTENNA To RF Common -50dB = 4.7, 10, 22, 47 nFC/1/ C, = 95% **K**MATCH ESL 1 side = 280 pH -60dB = 50 Ohms

10MHz

100MHz

1GHz

Insertion Loss Characteristics

Z_{TX-CM}

LCM

CPAR

RPAR

-70dB

-80dB

100kHz

= 50uH

= 50K Ohms

= 1pF

1MHz

10GHz

X2Y[®] and ESD/EFT Susceptibility

X2Y[®] ESD SUSCEPTIBILITY

- X2Y[®] is a shunt solution with very low and <u>matched</u> parasitic inductance.
 - Common mode attenuation is high over a wide frequency range.
 - Mode conversion has two contributors:
 - @Low frequencies: capacitor value matching.
 - @High frequencies: inductance matching.
- Mode conversion for 1nF and larger parts, @ 350MHz is better than -50dB

© X2Y Attenuators, LLC Confidential Information

X2Y[®] and ESD/EFT Susceptibility

Measured Common to Differential Mode Conversion X2Y[®] 0603 Capacitors

© X2Y Attenuators, LLC Confidential Information

Test Comparisons

- Test Setup
 - Agilent 85033D 3.5mm
 Calibration Kit
 - Agilent E5071C ENA Network Analyzer
 - 100 kHz 8.5 GHz
 - Balanced measurements (4port option)
 - DUT test board

Test PCBs

Calibration Positions on PCB

Short/Open/Load/Through (SOLT) calibration is used to de-embed the test fixture effects.

Inductor DUTs

X2Y[®] Capacitor DUTs

Mixed-Mode Derivations

- Mixed-mode measurements are derived mathematically from full four-port single-ended VNA measurements.
- The Agilent E5071C VNA includes the matrix manipulation software to perform these transformations.
- Of key importance are:
 - SCC21/SCC12 common mode rejection from one side to the other
 - Measures EMI filter effectiveness
 - SDC21/SDC12 common mode to differention conversion from one side to the other
 - Measures ESD suppression effectiveness

Mixed-Mode Derivations

SINGLE-ENDED MEASUREMENTS

5/21/2011

© X2Y Attenuators, LLC Confidential Information

Common Mode Derivation

- Goal: Determine the amount of common mode energy relative to grond driving Ports 1 and 3 that reaches Ports 2 and 4.
 - Indicates EMI suppression performance
- Both Port 1 and Port 3 drive CM energy in parallel.
 - The two parallel 50Ω ports appear as 25Ω on each side of the filter.
- Operation is symmetric:
 - S_{CC21} matches S_{CC12}

Common Mode Derivation

SINGLE-ENDED MEASUREMENTS

5/21/2011

Common to Diff Mode Conversion Derivation

- Goal: Determine the amount of common mode noise from the external port that converts to differential energy across the internal ports.
 - Indicates immunity to interference: cell phone, ESD, EFT, etc.
- CM input is two parallel 50Ω sources, 25Ω net.
- DM output appears across series
 50Ω loads, 100Ω net.
- Operation is symmetric:
 - S_{DC21} matches S_{DC12}

Common to Diff Mode Conversion Derivation

5/21/2011

DUTs

DUT	Component Size (mm)	DC Current Rating	Pic
X2Y® 1812	4.4 x 3.2	In bypass, no current limit	
X2Y® 1206	3.2 x 1.6	In bypass, no current limit	
X2Y® 0603	1.6 x 0.8	In bypass, no current limit	
(1) 4000 Ohm Common Mode Choke	5.0 x 3.6	200 mAmps	
(1) 1000 Ohm Common Mode Choke	5 .0 x 4.7	1500 mAmps	
(1) 4.7 mH Common Mode Choke A	9.0 x 6.0	400 mAmps	
(1) 4.7mH Common Mode Choke B	9.3 x 5.9	400 mAmps	
(2) 1uH Chip Inductors	(2) 3.2 x 1.6	1200 mAmps	•
(2) 120 Ohm Ferrite beads	(2) 3.2 x 1.6	3000 mAmps	••
(2) 600 Ohm Ferrite beads	(2) 3.2 x 1.6	3000 mAmps	••

Footprint Comparisons

X2Y® CAPACITORS SUPERIMPOSED OVER MAGNETIC CM FILTERS

- CM Rejection at frequencies > 100MHz is generally weak with magnetics
 - Interwinding capacitance bypasses series inductance at high frequencies.
 - Ferrite interdomain capacitance bypasses series loss at high frequencies.

- Rejection ratio degrades for real antenna Z > 50Ω
 - 120 180 Ohms typical
 - 150 Ω degrades by
 - 6dB at high loss,
 - ≈ 3dB near 10dB
- Where $Z_{CM} >> (Z_S + Z_A)$:
 - Loss $\approx 20LOG(Z_S + Z_A)/(Z_{CM})$
 - Increasing Z_A from 50 to 150 doubles ($Z_S + Z_A$)

- Low frequency chokes:
 - Capable of good insertion loss at modest frequencies.
 - Capacitive parasitics reduce attenuation to 20dB or less @ 100MHz
- Resonances create unstable insertion loss @ high frequencies.
 - Actual insertion loss highly dependent on:
 - Circuit source impedance
 - Cable geometry

Insertion Loss dB = 20LOG(Z_{SOURCE} + Z_{ANTENNA})/(Z_{SOURCE} + Z_{ANTENNA} + Z_{CM})

Complex HF resonances

- High inductance / capacitance chokes exhibit complex interactions with PCB traces, connectors, & cables @ high frequencies.
- As frequency moves
 between odd and even
 1/4λ multiples of cable
 lengths, unterminated
 cable noise attenuation
 moves between local
 minima and maxima.

- High frequency chokes / beads
 - Bead insertion loss limited by parasitic resistance and capacitance.
 - 600 Ohm bead limits max.
 insertion loss to -17dB
 - 1pF limits insertion loss @ 1GHz to -8dB
 - Must include PCB parasitics
 - Nearby etch or parts can destroy HF insertion loss

Common Mode Rejection X2Y®

- Consistent high frequency performance independent of capacitance.
 - Mounted inductance controls
 - Linear decrease in noise attenuation w/frequency
 - 0603 parts -24dB or better @ 1GHz into 25 Ohm even mode impedance.
- Capacitor value only affects low frequency attenuation.
 - Larger capacitance values filter lower frequencies

Common Mode Rejection X2Y®

- Rejection ratio improves for real antenna Z > 50Ω
 - 120 Ω 180 Ω Ohms typical
 - 150 Ω improves by
 - 2.5dB at high loss, (>20dB)
- Where $Z_{X2Y} << (Z_S | |Z_A)$:
 - Loss $\approx 20LOG(Z_{X2Y})/(Z_S | | Z_A)$
 - Increasing Z_A from 50Ω VNA port to 150Ω practical antenna value decreases (Z_S | |Z_A) by 0.75:1.

Common Mode Rejection Comparisons

Common Mode Rejection Comparisons

Common Mode Rejection Comparisons Load Antenna Impedance

- X2Y[®] capacitors significantly outperform CM chokes using 50Ω VNA ports
- X2Y[®] capacitors exhibit even greater advantage in real applications using typical 150Ω antennae.

đВ

Rejection / Conversion

- Parasitic capacitive coupling in CM chokes results in significant mode conversion at even modest frequencies.
 - Typical ≈ -35dB @ 350MHz
 (F_{KNEE} IEC 61000-2-4)
 - Some devices are much worse
- Results in weak ESD immunity.

Measured CM Rejection and Differential to Common Mode Conversion Popular Chokes, Beads 100 Ohm / 25 Ohm

- Different chokes with the same datasheet specifications can result in dramatically different mode conversion characteristics.
- LF chokes exhibit particularly poor mode conversion at high frequencies.

 Ferrite beads and smaller value chokes improve mode conversion, but exhibit poorer common mode rejection

- X2Y[®] capacitors convert a small amount of differential energy to common mode due to finite tolerance mismatches.
- Conversion is -52dB @ 350MHz, -40dB @1GHz
 - 17dB better than typical CM choke / bead solution

Test Comparisons

- Example, Single Board Computer Power Feed:
 - 68HC11 processor
- 5uH CM choke tested
- PI filter w/ 5uH CM choke tested
 - 0.1uF cap_5uH CM choke_220nF cap
- Seven values of X2Y[®] capacitors tested
 - 47pF, 100pF, 220pF, 330pF, 470pF, 560pF, 1000pF
- Radiated Emissions Setup:

CM Choke and PI filters

Comparative Performance Application

- both exhibit similar performance
 - − Filter cut-off \approx 32MHz
 - Attenuation effective to about 450MHz
- Parasitic capacitance completely defeats CM choke and PI filter above 450MHz

HC11 (1MHz - 500MHz, CMC and PI)

HC11 (1MHz - 500MHz, CMC and PI)

Slides 37-44, 50MHz –1GHz:

- X2Y[®] capacitors effective to 1GHz and beyond.
- Capacitance value determines low frequency rejection.
- Very small X2Y[®] caps (47pF) superior solution vs. CM chokes or PI filters down to 300MHz.
- 470pF and larger X2Y[®] caps superior over all frequencies.

HC11 (50MHz –1GHz, 47pF X2Y)

HC11 (50MHz –1GHz, 100pF X2Y)

HC11 (50MHz –1GHz, 220pF X2Y)

HC11 (50MHz -1GHz, 330pF X2Y)

HC11 (50MHz –1GHz, 470pF X2Y)

HC11 (50MHz –1GHz, 560pF X2Y)

HC11 (50MHz –1GHz, 1000pF X2Y)

HC11 (50MHz –1GHz, 1000pF X2Y)

 X2Y[®] 1000pF vastly better radiated emissions than 5uH CM choke or PI filter

HC11 (50MHz - 1GHz)

In this design, each X2Y 1206 0.1uF capacitor was used to replace a common mode choke, two resistors and two capacitors to achieve the filter results shown above.

X2Y[®] Capacitor Selection

- X2Y[®] capacitors operate as shunts.
 - Attenuate all energy above cut-off frequency
 - Select to pass required signal energy / block offensive HF noise.
 - Use capacitance value that is large enough to attenuate effectively to lowest noise frequency, but no larger than necessary.
- Four recommended selection methods:
 - 1. Pass a required signal rise / fall time.
 - 2. Pass a required signal rise / fall time as a bit interval %.
 - 3. Cut-off HF noise at a specific frequency.
 - 4. Substitute for a specific CM choke.

X2Y[®] Capacitor Selection Method 1.

- Use Acceptable Signal Rise and Fall Times
- Establish T_{RISE} / T_{FALL}

 $- C \le T_{RISE_{10\%}90\%} MIN / (2.2*Z_{SOURCE})$

- Example: CAN BUS 1Mbps, 120 Ohm
 - T_{RISE_10%_90%} <= 50ns
 - $Z_{SOURCE} = 120 \text{ Ohms} / 2 \text{ (Loosely coupled diff pair)} = 60 \text{ Ohms}$
 - C_{MAX} <= 50ns/(2.2*60 Ohms)
 - $C_{MAX} \le 380 pF$
 - Recommended value = 330pF
 - T_{RISE_10%_90%} <= 44ns

X2Y[®] Capacitor Selection Method 2.

- Pass Signal Rise and Fall Times Based on Signal Bit Rate and % Allowable T_R / T_F
- $T_{RISE_{10\%}90\%}$ / $T_{FALL_{90\%}10\%}$ < 5-10% of bit period is usually OK

- 5%

- C <= 1/(44*Bit_Frequency*Z_{SOURCE})
- CAN BUS

- C <= 1/(44*1MHz*60 Ohms) <= 380pF

- 10%

C <= 1/(22*Freq*Z_{SOURCE})

71

X2Y[®] Capacitor Selection Method 3.

- Cut Noise Down to a Specific Low Frequency
- Noise cut-off frequency F_{CO} is known, source impedance Z_{SOURCE} and antenna impedance Z_{ANTENNA}.
 - C => 1/(2π*F_{CO}*(Z_{SOURCE} || Z_{ANTENNA})
- Example: Switching power supply harmonic suppression
 - $F_{CO} = 200 \text{kHz}$
 - Z_{SOURCE} = transmission line impedance 10 Ohm
 - $Z_{ANTENNA} = 150 Ohm$
 - $C_{MIN} >= 1/(2\pi * 200 \text{ Hz} * 10 | | 150 \text{ Ohm}) = 1/1.26\text{E7} = 80\text{nF}$
 - Recommended minimum value = 100nF
- Use larger capacitances for lower frequencies and/or lower impedances.

X2Y[®] Capacitor Selection Method 4.

- Substitute for known CM Choke at a known source and antenna impedance:
 - Match choke low frequency insertion loss:
 - $C_{X2Y} >= L_{CM} / (Z_{SOURCE} * Z_{ANTENNA})$
 - L_{CM} is the coupled inductance.
 - Typically \approx 2X Inductance measured with second winding open
 - If Z_{SOURCE} and/or Z_{ANTENNA} are not known:
 - Assume 50 Ohms for Z_{SOURCE}
 - Assume 100 Ohms for Z_{ANTENNA}
 - Yields a conservative result that will perform equal or better in a real application

X2Y[®] Capacitor Selection Method 4.

- Example
 - $-50\Omega Z_{SOURCE}$
 - 100Ω Z_{ANTENNA}
 - 50uH CM Choke
- $C_{X2Y} = 50 \mu H / (50 \Omega^* 100 \Omega)$
 - 10nF rated value
 - 4 mil dielectric to ground
- X2Y[®] matches LF performance
- X2Y[®] provides > 20dB insertion loss improvement
 @ 1GHz

X2Y[®] Capacitors, Best Practices Circuit 1

X2Y[®] Circuit 1 CM Filter

- Performance is typically limited by external capacitor wiring inductance:
 - L3A/L3B, L4A, L4B
- Maximize performance by minimizing L3x, and L4x inductances.
 - Follow X2Y[®] mounting guidelines.
- L1x, and L2x inductance is OK and even beneficial when balanced.
 - Limitation on L2 is to keep connection close to egress.

X2Y[®] Capacitors, Best Practices Circuit 1

- Locate capacitors close to bulkhead
- Minimize, L3A, L3B
 - Connect A, B pad connections near base of pads
- Minimize L4A, L4B:
 - Connect G1/G2 to RF return polygon on an internal PCB layer as close to the capacitor surface as possible.
 - Chassis for metal enclosures
 - Power common plane for plastic enclosures.
 - 12mil vs 4mil upper dielectric costs about 3dB insertion loss @1GHz
 - Metal enclosures attach RF return polygon to chassis w/ low inductance
 - Multiple attachments along PCB edge recommended

External Signal B

Internal Signal B

X2Y[®] Capacitors, Best Practices Circuit 1

Example X2Y[®] Layout Low L3x, L4x

5/21/2011

X2Y[®] Capacitors, Mounting Errors

Example, Circuit 1 Mount:

- AVOID THESE BAD PRACTICES:
 - "T" to A, or B pad connections
 - Leaving G2 unconnected
 - Stringer trace from any pad.
- Any of the above practices insert substantial inductance which impairs performance at high frequency.

Example X2Y[®] Layout Mistakes to Avoid High L3x, L4x

Summary

- Most EMI problems are Common Mode.
- Reduce common mode by attenuating driving voltage and/or mismatching antenna impedance.
 - Properly mounted X2Y[®] caps do both
- Series elements suffer from mode conversion and/or poor CM insertion loss at high frequencies.
- X2Y[®] capacitors maintain good CM insertion loss and mode conversion figures into the GHz.

Summary

- Magnetics noise suppression degrades as actual circuit antenna impedance increases above measuring instrument 50Ω impedance.
 - Real w/150 Ω antenna is typically 3dB worse than 50 Ω VNA measurement
- X2Y[®] noise suppression improves as actual circuit antenna impedance increases above measuring instrument 50Ω impedance.

– Real w/150 Ω antenna is 3dB better than 50 Ω VNA

- X2Y[®] capacitor values may be easily selected to filter EMI based on any:
 - Required signal pass-band (sets max capacitor value),
 - Required noise stop-band (sets min capacitor value),
 - Improved replacement for existing CM magnetics

Summary

- X2Y®
 - Small, Light
 - Lower Cost
 - Higher Reliability
 - Lowest Assembly Cost
 - Superior HF Performance

- CM Choke
 - Large, Heavy
 - Expensive
 - Subject To Vibration Induced Failure
 - Poor HF Performance

